首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramuscular fat (IMF) is a key parameter for evaluation of nutritional quality of beef, with its endogenous synthesis regulated by stearoyl CoA desaturase (SCD1) and diacylglycerol-acyl transferase 1 (DGAT1) genes in cattle. The object of this research was to evaluate the effect of SCD1 and DGAT1 polymorphisms on IMF trait in beef cattle and to estimate the frequency distribution of SNPs in the two genes in Chinese cattle populations. The SCD1 and DGAT1 polymorphisms were detected by PCR-single strand conformation polymorphism (PCR-SSCP) method in Chinese Simmental cattle and their associations with IMF traits were analyzed using the general linear model (GLM). The frequency distribution of SNPs in SCD1 and DGAT1 genes were detected by PCR-SSCP method and analyzed in seven other cattle populations. The results showed significant associations of SNPs SCD1-878, SCD1-762, and DGAT1 10433 and 10434 with IMF (%) and shearing force values (SFV; kg) in Chinese Simmental cattle. A haplotype combining SCD1-878C, SCD1-762T, and DGAT1 10433 and 10434-GC had the highest IMF, marbling score and shearing force. The polymorphic investigation indicated that the frequency of SCD1-878C or SCD1-762T was significantly higher in Chinese southern cattle (Leiqiong, Yunnan High pump, BMY or Minnan Cattle) than in Chinese northern cattle (Chinese Simmental, Luxi Cattle, Bohai Black or Chinese Holstein), while the frequency of DGAT1 10433 and 10434-GC in Chinese indigenous breed (Leiqiong, Yunnan High pump, BMY, Luxi Cattle, Bohai Black, or Minnan Cattle) was significantly lower than breeds with imported blood (Chinese Simmental or Chinese Holstein). These findings demonstrated that both the SCD1 and DGAT1 SNPs were prospect genetic markers for IMF traits, and the SCD1 SNPs could be used as a genetic marker for southern or northern blood in Chinese cattle.  相似文献   

2.
Yuan J  Zhou J  Deng X  Hu X  Li N 《Biochemical genetics》2007,45(7-8):611-621
We report molecular cloning and single nucleotide polymorphism detection of the buffalo DGAT1 gene. Diacylglycerol acyltransferase (DGAT1) is considered the key enzyme in controlling the rate of synthesis of triglycerides. The DGAT1 gene was recently identified as a strong functional candidate gene affecting milk yield and composition in cattle. A full-length buffalo DGAT1 genomic DNA was amplified by iterative PCR based on homolog cloning. The buffalo DGAT1 gene comprises 17 exons and spans approximately 8.3 kb. The genomic structures of DGAT1 are highly conserved among mammal species. The deduced protein of buffalo DGAT1 contains 489 amino acids, showing high-sequence similarity with mammal homologs. Through PCR-SSCP analysis and sequencing, seven polymorphic positions were detected in the complete genomic region of buffalo DGAT1, and their frequencies were observed from a collection of 117 buffalo. The SNP (C/T) detected at position 11785 in exon 17 creates a substitution change for the amino acid sequence, resulting in an Ala residue (GCG) transition to a Val residue (GTG) in position 484 of buffalo DGAT1 protein. Information provided in this study will be useful in further studies to determine the role DGAT1 plays in the regulation of milk fat synthesis and quality improvement for milk in buffalo. Jing Yuan and Jun Zhou contributed equally to this work.  相似文献   

3.
Bovine tuberculosis (BTB) is a considerable health threat to livestock keepers and general communities in many developing countries. Information on genetic resistance or susceptibility because of polymorphisms of candidate genes could be used in making selection decisions for breeding disease tolerant/resistant animals. Here, we investigated associations between polymorphisms at the solute carrier family 11 (proton‐coupled divalent metal ion transporters), member 1 gene (SLC11A1, previously known as natural resistant associated macrophage protein 1, NRAMP1), with BTB phenotypes in Chadian cattle. Phenotypes were (i) single intradermal comparative cervical tuberculin test (SICCT) outcome, (ii) presence of gross visible lung lesions, (iii) a bacteriological culture test outcome and (iv) a predicted true BTB infection status using a Bayesian model. All traits were recorded as binary (presence or absence) traits. A total of 211 cattle were genotyped for a microsatellite within the SLC11A1 candidate gene. Standard linear and threshold‐liability models regressing BTB traits on copy number of SLC11A1 alleles revealed statistically significant effects of SLC11A1 alleles (P < 0.001) on most BTB traits. Polymorphisms (alleles 211, 215 and 217) are significantly related to lower incidence of BTB traits in Chadian cattle. This is the first study to report the association of SLC11A1 gene polymorphisms with BTB traits in Chadian or any other African cattle breeds.  相似文献   

4.
The substitution of lysine for alanine (K232A) in the acyl-CoA:diacylglycerol acyltransferase, which is encoded by the DGAT1 gene, was tested for the significance for breeding evaluation of bulls of the holsteinized Black-and-White breed. The breeding value was estimated by the DYDC (daughter yield deviation to contemporaries) method with modification. The frequency of allele 232K in the bulls examined was 0.28, lower than in Holstein bulls (0.4–0.6). The greatest effect of the A232K substitution was observed for the percent fat milk yield (1.4σ) and milk yield (0.76σ), and a lower effect was established for the milk protein yield (0.47σ) and percent protein milk yield (0.44σ). In the case of milk fat yield, the effect was nonsignificant. A method was proposed for converting the data on fat yield in order to obtain significant results in this case as well. The effect of the A232K substitution was estimated at 154 kg for milk yield, 2.8 kg for milk protein yield, 0.079% for percent milk fat, and 0.015% for percent milk protein yield. The results are discussed in the context of multiple pleiotropic effects of the K232A substitution in the DGAT1 gene. It is proposed that the K232A substitution of the DGAT1 gene may be used as a golden standard in comparisons of the effect on milk production traits for the total gene set. This approach will allow a meta-analysis of the gene effects in spite of the different dairy cattle breeds and methods used to analyze their breeding value. In view of more than 30-year experience of using sperm of Holstein bulls, including those breeds in North America, it was noted that the effect of the A232K substitution on milk production traits agreed well with the data reported for the North American commercial population of Holstein cattle.  相似文献   

5.
6.
T. Chang  J. Xia  L. Xu  X. Wang  B. Zhu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2018,49(4):312-316
A genome‐wide association study (GWAS) was conducted for two carcass traits in Chinese Simmental beef cattle. The experimental population consisted of 1301 individuals genotyped with the Illumina BovineHD SNP BeadChip (770K). After quality control, 671 990 SNPs and 1217 individuals were retained for the GWAS. The phenotypic traits included carcass weight and bone weight, which were measured after the cattle were slaughtered at 16 to 18 months of age. Three statistical models—a fixed polygene model, a random polygene model and a composite interval mapping polygene model—were used for the GWAS. The genome‐wide significance threshold after Bonferroni correction was 7.44E‐08 (= 0.05/671 990). In this study, we detected eight and seven SNPs significantly associated with carcass weight and bone weight respectively. In total, 11 candidate genes were identified within or close to these significant SNPs. Of these, we found several novel candidate genes, including PBX1, GCNT4, ALDH1A2, LCORL and WDFY3, to be associated with carcass weight and bone weight in Chinese Simmental beef cattle, and their functional roles need to be verified in further studies.  相似文献   

7.
Winter A  Alzinger A  Fries R 《Genomics》2004,83(1):172-180
As a first step towards verifying the candidate status of DGAT1 as the causal gene for milk fat percentage in cattle, we constructed a bovine BAC contig spanning 576 kb of the chromosomal region containing DGAT1. High content of NotI sites (21 within the contig) indicated that the region is gene-rich. Twenty-three genes neighboring DGAT1 were mapped, including two bovine cDNA sequences that have no orthologous sequences within the NCBI sequence databases. On average, 2015 bp for each of the 23 neighboring genes were sequenced and entered into EMBL. Likewise, 10 new STS markers were established by BAC-end sequencing. Within the genes and STS markers, 55 polymorphisms were discovered. These will form the basis of future linkage disequilibrium studies to test whether any genes neighboring DGAT1 are associated with variation in milk fat percentage, thereby testing the candidate status of DGAT1.  相似文献   

8.
In dairy cattle, quantitative trait nucleotides (QTNs) underlying quantitative trait loci (QTL) for milk production traits have been identified in bovine DGAT1, GHR and ABCG2 genes. The SPP1 gene has also been proposed to be a regulator of lactation. In sheep, QTL underlying milk production traits have been reported only recently, and no proven QTN has been identified. Taking into account the close phylogenetic relationship between sheep and cattle, this study examined the possible effects of the aforementioned genes on sheep milk production traits. We first studied the genetic variability of the DGAT1, GHR, ABCG2 and SPP1 genes in 15 rams of the Spanish Churra dairy sheep breed. Second, we performed an association analysis between SNPs identified in these genes and three milk production traits recorded in a commercial population of Churra sheep. This analysis revealed only three significant associations at the nominal level (P-value <0.05) involving allelic variants of the ABCG2 gene, whereas no significant association was found for the DGAT1, GHR and SPP1 genes. When the Bonferroni correction was applied to take into account the multiple tests performed, none of the associations identified at the nominal level remained significant. Nevertheless, taking into account the high level of false-negative findings that can arise when applying the stringent Bonferroni correction, we think that our results provide a valuable primary assessment of strong candidate genes for milk traits in sheep.  相似文献   

9.
This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon’s region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.  相似文献   

10.
11.
12.
We report the cloning and initial characterization of the genes encoding DGAT2 (diacylglycerol transferase 2), MOGAT1 and MOGAT2 (monoacylglycerol transferases 1 and 2) in domestic cattle (Bos taurus). The three closely related genes belong to a gene family with at least eight members in mammals and are candidate genes for quantitative traits related to dietary fat uptake, lipid synthesis and storage. MOGAT2 and DGAT2 form a tandem and were mapped to bovine chromosome (BTA) 15q25-->q26 by fluorescence in situ hybridization. MOGAT1 was localized to BTA 2q43-->q44. The three genes were investigated for polymorphisms that might be associated with breeding values for milk fat percentage in the dairy breeds German Holstein, German Simmental and German Brown. All the detected polymorphisms were located outside exons or, with one exception, were silent. In MOGAT1, a missense mutation in exon 4 was found that causes a non-conservative substitution of cysteine170 (uncharged, hydrophobic) by lysine (positively charged, hydrophilic). However, allele frequency estimates from pooled DNA samples revealed no significant association of the observed polymorphisms with breeding values for milk fat percentage. A comparative analysis of chromosomal locations and exon-intron structure of the known members of the DGAT2/MOGAT gene family in humans, rodents and cattle indicates an ancient tandem duplication of the ancestor gene combined with an intron gain (or loss) in one copy. Further members of the family may have arisen by duplications of this gene tandem via two rounds of interchromosomal or genome duplications as well as further local (single) gene duplication and loss events.  相似文献   

13.

An oligonucleotide microarray—which allows for parallel genotyping of many SNPs in genes involved in cow milk protein biosynthesis—was used to identify which of the 16 candidate SNPs are associated with milk performance traits in Holstein cows. Four hundred cows were genotyped by the developed and validated microarray. Significant associations were found between four single SNPs, namely DGAT1 (acyloCoA:diacylglycerol acyltransferase), LTF (lactoferrin), CSN3 (kappa-casein), and GHR (growth hormone receptor) and with fat and protein yield and percentage. Many significant associations between combined genotypes (two SNPs) and milk performance traits were found. The associations between the combined genotypes DGAT1/LTF and DGAT1/LEPTIN analyzed traits are presented as examples.

The microarray based on APEX (Arrayed Primer Extension) is a fast and reliable method for multiple SNP analysis of potential application in marker-assisted selection. After further development, the chip may prospectively be used for dairy cattle paternity analysis and evolutionary studies.  相似文献   

14.
Genes involved in muscle lipid composition in 15 European Bos taurus breeds   总被引:1,自引:0,他引:1  
Consumers demand healthy and palatable meat, both factors being affected by fat composition. However, red meat has relatively high concentration of saturated fatty acids and low concentration of the beneficial polyunsaturated fatty acids. To select animals prone to produce particular fat types, it is necessary to identify the genes influencing muscle lipid composition. This paper describes an association study in which a large panel of candidate genes involved in adipogenesis, lipid metabolism and energy homoeostasis was tested for effects on fat composition in 15 European cattle breeds. Sixteen genes were found to have significant effects on different lipid traits, and among these, CFL1 and MYOZ1 were found to have large effects on the ratio of 18:2/18:3, CRI1 on the amount of neutral adrenic acid (22:4 n‐6), MMP1 on docosahexaenoic acid (22:6 n‐3) and conjugated linoleic acid, PLTP on the ratio of n‐6:n‐3 and IGF2R on flavour. Several genes – ALDH2, CHRNE, CRHR2, DGAT1, IGFBP3, NEB, SOCS2, SUSP1, TCF12 and FOXO1 – also were found to be associated with both lipid and organoleptic traits although with smaller effect. The results presented here help in understanding the genetic and biochemical background underlying variations in fatty acid composition and flavour in beef.  相似文献   

15.

Background

The purpose of this study was to evaluate the effects of eight single nucleotide polymorphisms (SNP), previously associated with meat and milk quality traits in cattle, in a population of 443 commercial Aberdeen Angus-cross beef cattle. The eight SNP, which were located within five genes: μ-calpain (CAPN1), calpastatin (CAST), leptin (LEP), growth hormone receptor (GHR) and acylCoA:diacylglycerol acyltransferase 1 (DGAT1), are included in various commercial tests for tenderness, fatness, carcass composition and milk yield/quality.

Methods

A total of 27 traits were examined, 19 relating to carcass quality, such as carcass weight and fatness, one mechanical measure of tenderness, and the remaining seven were sensory traits, such as flavour and tenderness, assessed by a taste panel.

Results

An SNP in the CAPN1 gene, CAPN316, was significantly associated with tenderness measured by both the tenderometer and the taste panel as well as the weight of the hindquarter, where animals inheriting the CC genotype had more tender meat and heavier hindquarters. An SNP in the leptin gene, UASMS2, significantly affected overall liking, where animals with the TT genotype were assigned higher scores by the panellists. The SNP in the GHR gene was significantly associated with odour, where animals inheriting the AA genotype produced steaks with an intense odour when compared with the other genotypes. Finally, the SNP in the DGAT1 gene was associated with sirloin weight after maturation and fat depth surrounding the sirloin, with animals inheriting the AA genotype having heavier sirloins and more fat.

Conclusion

The results of this study confirm some previously documented associations. Furthermore, novel associations have been identified which, following validation in other populations, could be incorporated into breeding programmes to improve meat quality.  相似文献   

16.
Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo.  相似文献   

17.
18.
Summary In a microarray experiment, one experimental design is used to obtain expression measures for all genes. One popular analysis method involves fitting the same linear mixed model for each gene, obtaining gene‐specific p‐values for tests of interest involving fixed effects, and then choosing a threshold for significance that is intended to control false discovery rate (FDR) at a desired level. When one or more random factors have zero variance components for some genes, the standard practice of fitting the same full linear mixed model for all genes can result in failure to control FDR. We propose a new method that combines results from the fit of full and selected linear mixed models to identify differentially expressed genes and provide FDR control at target levels when the true underlying random effects structure varies across genes.  相似文献   

19.
Explicitly fitting effects for major genes or QTL that account for a large percentage of variation in a whole genomic prediction model may increase prediction accuracy. This study compared approaches to account for a major effect of an F94L variant in the MSTN gene within the genomic prediction using bovine whole‐genomic SNP markers. Among the beef cattle breeds, Limousin have been known to have an F94L variant that is not present in Angus. The reference population in this study consisted of 3060 beef cattle including pure‐bred Limousin (PL), cross‐bred Limousin with Angus (LF) and pure‐bred Angus, genotyped using a BovineSNP50 BeadChip and directly for the MSTN‐F94L variant. We compared prediction accuracies in PL animals using the three datasets from only the PL population, admixed PL and LF (AL) or multibreed analysis using all of the PL, LF and Angus (MB) population according to four‐fold cross‐validation after K‐means clustering. The MSTN‐F94L variant was the most strongly associated with five traits (birth weight, calving ease direct, milk, weaning weight and yield grade) among the 13 measured traits in PL and AL populations. Fitting the MSTN‐F94L variant as a random effect, the genomic prediction accuracies for birth weight increased by 2.7% in PL, by 2.2% in AL and by 3.2% in MB. Prediction accuracies for five traits increased in the MB analysis. Fitting MSTN‐F94L as a fixed effect in PL, AL and MB analyses resulted in increased prediction accuracy in PL for eight traits. Prediction accuracies can be improved by including a causal variant in genomic evaluation compared with simply using whole‐genome SNP markers. Fitting the causal variant as a fixed effect along with markers fitted as random effects resulted in greater prediction accuracies for most traits. Causal variants should be genotyped along with SNP markers.  相似文献   

20.
It is known that the SREBP1c gene is an important gene responsible for adipogenesis and regulation of the expression of genes controlling fatty acid biosynthesis. Its expression levels increase in parallel with obesity. Therefore, the present study focused on screening the genetic variation within bovine SREBP1c gene and analyzing its effect on growth traits in 1035 individuals belonging to four Chinese cattle breeds (QC, NY, JX, CH) using PCR-SSCP, DNA sequencing, and forced PCR-RFLP methods. The results revealed two novel mutations: NC_007317: g. 10781 C > A (457aa), 10914 G > A (502aa). Association analysis with growth traits in the Nangyang breed indicated that: The SNPs in the bovine SREBP1c gene had significant effects on body weight and average daily gain at birth, 6 and 12 months old (P < 0.05 or P < 0.01). Therefore, these results suggest that the SREBP1c gene is a strong candidate gene that affects growth traits in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号