首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V Hines  M Johnston 《Biochemistry》1989,28(3):1227-1234
Dihydroorotates deuteriated at both C5 and C6 have been prepared and used to probe the mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Primary deuterium isotope effects on kcat are observed with both (6RS)-[5(S)-2H]- and (6RS)-[6-2H] dihydroorotates (3 and 6, respectively); these effects are maximal at low pH. At pH 6.6, DV = 3.4 for the C5-deuteriated dihydroorotate (3), and DV = 2.3 for the C6-deuteriated compound (6). The isotope effects approach unity at pH 8.8. Analysis of the pH dependence of the isotope effects on kcat reveals a shift in the rate-determining step of the enzyme mechanism as a function of pH. Dihydroorotate oxidation appears to require general base catalysis (pKB = 8.26); this step is completely rate-determining at low pH and isotopically sensitive. Reduction of the cosubstrate, coenzyme Q6, is rate-limiting at high pH and is isotopically insensitive; this step appears to require general acid catalysis (pKA = 8.42). The results of double isotope substitution studies and analysis for substrate isotope exchange with solvent point toward a concerted mechanism for oxidation of dihydroorotate. This finding serves to distinguish further the mammalian dehydrogenase from its parasitic cognate, which catalyzes a stepwise oxidation reaction [Pascal, R., & Walsh, C.T. (1984) Biochemistry 23, 2745].  相似文献   

2.
D A Julin  J F Kirsch 《Biochemistry》1989,28(9):3825-3833
The C alpha primary hydrogen kinetic isotope effects (C alpha-KIEs) for the reaction of the cytoplasmic isozyme of aspartate aminotransferase (cAATase) with [alpha-2H]-L-aspartate are small and only slightly affected by deuterium oxide solvent (DV = 1.43 +/- 0.03 and DV/KAsp = 1.36 +/- 0.04 in H2O; DV = 1.44 +/- 0.01 and DV/KAsp = 1.61 +/- 0.06 in D2O). The D2O solvent KIEs (SKIEs) are somewhat larger and are essentially independent of deuterium at C alpha (D2OV = 2.21 +/- 0.07 and D2OV/KAsp = 1.70 +/- 0.03 with [alpha-1H]-L-aspartate; D2OV = 2.34 +/- 0.12 and D2OV/KAsp = 1.82 +/- 0.06 with [alpha-2H]-L- aspartate). The C alpha-KIEs on V and on V/KAsp are independent of pH from pH 5.0 to pH 10.0. These results support a rate-determining concerted 1,3 prototropic shift mechanism by the multiple KIE criteria [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106]. The large C alpha-KIEs for the reaction of mitochondrial AATase (mAATase) with L-glutamate (DV = 1.88 +/- 0.13 and DV/KGlu = 3.80 +/- 0.43 in H2O; DV = 1.57 +/- 0.05 and DV/KGlu = 4.21 +/- 0.19 in D2O) coupled with the relatively small SKIEs (D2OV = 1.58 +/- 0.04 and D2OV/KGlu = 1.25 +/- 0.05 with [alpha-1H]-L-glutamate; D2OV = 1.46 +/- 0.06 and D2OV/KGlu = 1.16 +/- 0.05 with [alpha-2H]-L-glutamate) are most consistent with a two-step mechanism for the 1,3 prototropic shift for this isozyme-substrate pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
D M Kiick  R S Phillips 《Biochemistry》1988,27(19):7333-7338
The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Rahier A 《Biochemistry》2001,40(1):256-267
Deuterium-labeled 5alpha-cholest-7-en-3beta-ol (1) bearing one or two deuteriums at the C-5alpha and (or) C-6alpha positions was synthesized in high isotopic and chiral purity. These compounds were used as substrates with the microsomal wild-type Zea mays and recombinant Arabidopsis thaliana Delta(7)-sterol-C5(6)-desaturases (5-DES) to probe directly the stereochemistry and the mechanism of the enzymatic reaction. Clearly, in the conversion of 1 by both 5-DESs, the 6alpha-hydrogen is removed. [6alpha-(2)H]-5alpha-Cholest-7-en-3beta-ol shows an intermolecular deuterium kinetic isotope effect (DKIE) on V and V/K, (D6)V = 2.6+/-0.3, (D6)V/K = 2.4+/-0.1; and (D6)V = 2.3 +/-0.3, (D6)V/K = 2.3+/-0.2 for the Zea mays and A. thaliana wild-type 5-DES, respectively. In contrast, negligible or minor isotope effects, (D5)V = 0.99+/-0.04, (D5)V/K = 0.91+/-0.08; and (D5)V = 0.93 +/-0.06, (D5)V/K = 0.96+/-0.04, respectively, were observed with [5alpha-(2)H]-cholest-7-en-3beta-ol. The observed pattern of isotope effects strongly suggests that the plant 5-DES initiates oxidation by cleavage of the chemically activated C6alpha-H bond, a step which appears to be partially rate-limiting in the desaturation process. Cleavage of the C5-H bond has a negligible isotope effect, indicating that the desaturation involves asynchronous scission of the two C-H bonds at C5 and C6. We showed previously [Taton, M., et al. (2000) Biochemistry 39, 701] that threonine 114 was not essential to maintaining desaturase activity, although V/K values for mutant T114I and T114S were respectively 10-fold lower and 4-fold higher than that of the native 5-DES. In this study, we combined variation in enzyme structure and DKIE studies and showed that (D6)V and (D6)V/K increased respectively to 3.8+/-0.3 and 3.8+/-0.4 in mutant T114I and decreased respectively to 1.6+/-0.4 and 1.7+/- 0.1 in mutant T114S. The data suggest that the conserved hydroxyl function at position 114 in the ERG3 family makes the abstraction of the 6alpha-hydrogen atom substantially less rate-limiting during the 5-DES reaction. Based on the data, a tentative mechanism for the desaturation of cholest-7-en-3beta-ol is proposed.  相似文献   

6.
We have investigated effects of pH on the catalytic and allosteric properties of the cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver. In the "activated" state, i.e., with 0.5 microM [3H]cAMP plus 1 microM cGMP or at saturating substrate concentrations (250 microM [3H]cAMP or [3H]cGMP), hydrolysis was maximal at pH 7.5-8.0 in assays of different pH. Hydrolysis of concentrations of substrate not sufficient to saturate regulatory sites and below the apparent Michaelis constant (Kmapp), i.e., 0.5 microM [3H]cAMP or 0.01 microM [3H]cGMP, was maximal at pH 9.5. Although hydrolysis of 0.5 microM [3H]cAMP increased with pH from 7.5 to 9.5, cGMP stimulation of cAMP hydrolysis decreased. As pH increased or decreased from 7.5, Hill coefficients (napp) and Vmax for cAMP decreased. Thus, assay pH affects both catalytic (Vmax) and allosteric (napp) properties. Enzyme was therefore incubated for 5 min at 30 degrees C in the presence of MgCl2 at various pHs before assay at pH 7.5. Prior exposure to different pHs from pH 6.5 to 10.0 did not alter the Vmax or cGMP-stimulated activity (assayed at pH 7.5). Incubation at high (9.0-10.0) pH did, in assays at pH 7.5, markedly increase hydrolysis of 0.5 microM [3H]cAMP and reduce Kmapp and napp. After incubation at pH 10, hydrolysis of 0.5 microM [3H]cAMP was maximally increased and was similar in the presence or absence of cGMP. Thus, after incubation at high pH, the phosphodiesterase acquires characteristics of the cGMP-stimulated form. Activation at high pH occurs at 30 degrees C but not 5 degrees C, requires MgCl2, and is prevented but not reversed by ethylenediaminetetraacetic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanism of 3-dehydroquinate synthase was explored by incubating partially purified enzyme with mixtures of [1-14C]3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) and one of the specifically tritiated substrates [4-3H]DAHP, [5-3H]DAHP, [6-3H]DAHP, (7RS)-[7-3H]DAHP, (7R)-[7-3H]DAHP, or (7S)-[7-3H]DAHP. Kinetic and secondary 3H isotope effects were calculated from 3H:14C ratios obtained in unreacted DAHP, 3-dehydroquinate, and 3-dehydroshikimate. 3H was not incorporated from the medium into 3-dehydroquinate, indicating that a carbanion (or methyl group) at C-7 is not formed. A kinetic isotope effect kH/k3H of 1.7 was observed at C-5, and afforded support for a mechanism involving oxidation of C-5 with NAD. A similar kinetic isotope effect was found at C-6 owing to removal of a proton in elimination of phosphate, which is reasonably assumed to be the next step in 3-dehydroquinate synthase. Hydrogen at C-7 of DAHP was not lost in the cyclization step of the reaction, indicating that the enol formed in phosphate elimination participated directly in an aldolase-type reaction with the carbonyl at C-2. In the dehydration of 3-dehydroquinate to 3-dehydroshikimate the (7R) proton from (7RS)- or (7R)-[7-3H]DAHP is lost, indicating that the 7R proton occupies the 2R position in dehydroquinate. Hence the cyclization step occurs with inversion of configuration at C-7. A kinetic isotope effect kH/k3H = 2.3 was observed in the conversion of (2R)-[2-3H]dehydroquinate to dehydroshikimate. Hence loss of a proton from the enzyme-dehydroquinate imine contributed to rate limitation in the reaction.  相似文献   

8.
Ribbons et al. (Ribbons, D.W., Ohta, Y., and Higgins, I.J. (1972) in Molecular Basis of Electron Transport, Miami Winter Symposic Series (Schultz, J., and Cameron, B.F., eds) Vol. 4, pp. 251-274, Academic Press, New York) presented a preliminary report that the flavoenzyme monooxygenase orcinol hydroxylase shows mixed type 4R, 4S stereospecificity with respect to dihydronicotinamide oxidation when resorcinol and m-cresol were used as substrate analogs. With the natural substrate orcinol, 4R chirality was maintained. In kinetic isotope experiments reported here, we demonstrate in fact that orcinol hydroxylase maintains 4R stereospecificity with respect to dihydronicotinamide oxidation with all three substrates, orcinol, resorcinol, and m-cresol. Deuterium and tritium kinetic isotope effects were detected under Vmax conditions with (4R)-[4-2H]-, and (4R)-[4-3H]NADH for all three substrates. No isotope effect was observed with (4S)-[4-2H]NADH and tritium labilization from assays with (4S)-[4-3H]-NADH was negligible in all cases.  相似文献   

9.
Acyl group specificity in the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphoethanolamine (1-alkyl-2-lyso-GroPEtn) to form 1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (1-alkyl-2-acyl-GroPEtn) and the subsequent desaturation of 1-alkyl-2-acyl-GroPEtn to form plasmalogens (1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine, i.e., 1-alk-1'-enyl-2-acyl-GroPEtn) was investigated in intact Madin-Darby canine kidney (MDCK) cells and cell-free membrane preparations. We found 1-[3H]alkyl-2-lyso-GroPEtn was selectively acylated with polyunsaturated fatty acids in the order 20:4 greater than 20:5 greater than 20:3 (n-9) greater than 22:6 by cell-free membrane preparations of MDCK cells. The same pattern of acyl specificity was seen in intact MDCK cells, although the intact cells produced significantly larger amounts of 1-[3H]alkyl-2-acyl-GroPEtn containing oleic acid. There was an increased desaturation of the 1-[3H]alkyl-2-acyl-GroPEtn species containing docosahexaenoic acid to plasmalogens (1-[3H]alk-1'-enyl-2-acyl-GroPEtn) by both intact MDCK cells and the cell-free membrane preparations. The relatively rapid disappearance of the 1-[3H]alk-1'-enyl-2-docosahexaenoyl-GroPEtn species during a 20-h incubation of prelabeled intact MDCK cells suggests a more rapid turnover of this molecular species. Our results indicate there is a high selectivity in the final acylation and desaturation steps of the biosynthetic pathway for plasmalogens.  相似文献   

10.
The transition state of the Vmax mutant of AMP nucleosidase from Azotobacter vinelandii [Leung, H. B., & Schramm, V. L. (1981) J. Biol. Chem. 256, 12823-12829] has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the Km for substrate, the activation constant for MgATP, and the Ki for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s-1 to 1.2 s-1. The kinetic isotope effects were measured with the substrates [1'-3H]AMP, [2'-2H]AMP, [2'-2H]AMP, [9-15N]AMP, and [1',9-14C, 15N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. The kinetic isotope effect with [9-15N]AMP decreased from 1.034 +/- 0.002 to 1.021 +/- 0.002 in response to MgATP. The [1'-3H]AMP isotope effect increased from 1.086 +/- 0.003 to 1.094 +/- 0.002, while the kinetic isotope effect for [1',9-14C, 15N]AMP decreased from 1.085 +/- 0.003 to 1.070 +/- 0.004 in response to allosteric activation with MgATP. Kinetic isotope effects with [1'-14C]AMP and [2'-2H]AMP were 1.041 +/- 0.006 and 1.089 +/- 0.002 and were not changed by addition of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Fagan RL  Nelson MN  Pagano PM  Palfey BA 《Biochemistry》2006,45(50):14926-14932
Dihydroorotate dehydrogenases (DHODs) oxidize dihydroorotate (DHO) to orotate using the FMN prosthetic group to abstract a hydride equivalent from C6 and a protein residue (Ser for Class 2 DHODs) to deprotonate C5. The fundamental question of whether the scission of the two DHO C-H bonds is concerted or stepwise was addressed for two Class 2 enzymes, those from Escherichia coli and Homo sapiens, by determining kinetic isotope effects on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined for the E. coli enzyme at two pH values below a previously reported pKa controlling reduction [Palfey, B. A., Bj?rnberg, O., and Jensen K. F. (2001) Biochemistry 40, 4381-4390] and were about 3-fold for DHO labeled at the 5-position, about 4-fold for DHO labeled at the 6-position, and about 6-7-fold for DHO labeled at both the 5- and 6-positions. These isotope effects are consistent with either a stepwise oxidation of DHO or a concerted mechanism with significant quantum mechanical tunneling. At a pH value above the pKa controlling reduction, no isotope effect was observed in E. coli DHOD for DHO deuterated at the 5-position (the proton donor in the reaction). This is consistent with a stepwise reaction; above the (kinetic) pKa, the deprotonation of C5 is fast enough that it does not contribute to the observed rate constant and, therefore, is not isotopically sensitive. All available information points to Ser acting as a component in a proton relay network which allows its transient deprotonation. The H. sapiens DHOD also appears to have a pKa near 9.4 controlling reduction, similar to that previously reported for the E. coli enzyme. Similar KIEs were obtained with the H. sapiens enzyme at a pH value below the pKa.  相似文献   

12.
Yeast dihydroorotate dehydrogenase (DHOD) was purified 2800-fold to homogeneity from its natural source. Its sequence is 70% identical to that of the Lactococcus lactis DHOD (family IA) and the two active sites are nearly the same. Incubations of the yeast DHOD with dideuterodihydroorotate (deuterated in the positions eliminated in the dehydrogenation) as the donor and [14C]orotate as the acceptor revealed that the C5 deuteron exchanged with H2O solvent at a rate equal to the 14C exchange rate, whereas the C6 deuteron was infrequently exchanged with H2O solvent, thus indicating that the C6 deuteron of the dihydroorotate is sticky on the flavin cofactor. The pH dependencies of the steady-state parameters (k(cat) and k(cat)/Km) are similar, indicating that k(cat)/Km reports the productive binding of substrate, and the parameters are dependent on the donor-acceptor pair. The lower pKa values for k(cat) and k(cat)/Km observed for substrate dihydroorotate (around 6) in comparison to the values determined for dihydrooxonate (around 8) suggest that the C5 pro S hydrogen atom of dihydroorotate (but not the analogous hydrogen of dihydrooxonate), which is removed in the dehydrogenation, assists in lowering the pKa of the active site base (Cys133). The pH dependencies of the kinetic isotope effects on steady-state parameters observed for the dideuterated dihydroorotate are consistent with the dehydrogenation of substrate being rate limiting at low pH values, with a pKa value approximating that assigned to Cys133. Electron acceptors with dihydroorotate as donor were preferred in the following order: ferricyanide (1), DCPIP (0.54), Qo (0.28), fumarate (0.15), and O2 (0.035). Orotate inhibition profiles versus varied concentrations of dihydroorotate with ferricyanide or O2 as acceptors suggest that both orotate and dihydroorotate have significant affinities for the reduced and oxidized forms of the enzyme.  相似文献   

13.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

14.
The enzyme clavaminate synthase (CS) catalyzes the formation of the first bicyclic intermediate in the biosynthetic pathway to the potent beta-lactamase inhibitor clavulanic acid. Our previous work has led to the proposal that the cyclization/desaturation of the substrate proclavaminate proceeds in two oxidative steps, each coupled to a decarboxylation of alpha-ketoglutarate and a reduction of dioxygen to water [Salowe, S. P., Marsh, E. N., & Townsend, C. A. (1990) Biochemistry 29, 6499-6508]. We have now employed kinetic isotope effect studies to determine the order of oxidations for CS purified from Streptomyces clavuligerus. By using (4'RS)-[4'-3H,1-14C]-rac-proclavaminate, a primary T(V/K) = 8.3 +/- 0.2 was measured from [3H]water release data, while an alpha-secondary T(V/K) = 1.06 +/- 0.01 was determined from the changing 3H/14C ratio of the product clavaminate. Values for the primary and alpha-secondary effects of 11.9 +/- 1.7 and 1.12 +/- 0.07, respectively, were obtained from the changing 3H/14C ratio of the residual proclavaminate by using new equations derived for a racemic substrate bearing isotopic label at both primary and alpha-secondary positions. Since only the first step of consecutive irreversible reactions will exhibit a V/K isotope effect, we conclude that C-4' is the initial site of oxidation in proclavaminate. As expected, no significant changes in the 3H/14C ratio of residual substrate were observed with [3-3H,1-14C]-rac-proclavaminate. However, two new tritiated compounds were produced in this incubation, apparently the result of isotope-induced branching brought about by the presence of tritium at the site of the second oxidation. One of these compounds was identified by comparison to authentic material as dihydroclavaminate, a stable intermediate that normally remains enzyme-bound. On the basis of the body of information available and the similarities to alpha-ketoglutarate-dependent dioxygenases, a comprehensive mechanistic scheme for CS is proposed to account for this unusual enzymatic transformation.  相似文献   

15.
The enzyme mechanism of sialidase from influenza virus has been investigated by kinetic isotope methods, NMR, and a molecular dynamics simulation of the enzyme-substrate complex. Comparison of the reaction rates obtained with the synthetic substrate 4-methylumbelliferyl-N-acetyl-alpha-D-neuraminic acid and the [3,3-2H]-substituted substrate revealed beta-deuterium isotope effects for V/Km ranging over 1.09-1.15 in the pH range 6.0-9.5, whereas the effects observed for V in this pH range increased from 0.979 to 1.07. In D2O, beta DV/Km was slightly increased by 2% and 5% at pD 6.0 and 9.5 respectively, while beta DV was unchanged. Solvent isotope effects of 1.74 were obtained for both beta DV/Km and beta DV at pD 9.5, with beta DV/Km decreasing and beta DV remaining constant at acidic pD. 1H-NMR experiments confirmed that the initial product of the reaction is the alpha-anomer of N-acetyl-D-neuraminic acid. Molecular dynamics studies identified a water molecule in the crystal structure of the sialidase-N-acetyl-D-neuraminic acid complex which is hydrogen-bonded to Asp151 and is available to act as a proton donor source in the enzyme reaction. The results of this study lead us to propose a mechanism for the solvent-mediated hydrolysis of substrate by sialidase that requires the formation of an endocyclic sialosyl cation transition-state intermediate.  相似文献   

16.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

17.
The biosynthesis of S-adenosylmethionine occurs in a unique enzymatic reaction in which the synthesis of the sulfonium center results from displacement of the entire polyphosphate chain from MgATP. The mechanism of S-adenosylmethionine synthetase (ATP:L-methionine s-adenosyltransferase) from Escherichia coli has been characterized by kinetic isotope effect and substrate trapping measurements. Replacement of 12C by 14C at the 5' carbon of ATP yields a primary Vmax/Km isotope effect (12C/14C) of 1.128 +/- 0.003 in the absence of added monovalent cation activator (K+). At saturating K+ concentrations (10 mM) the primary isotope effect diminishes slightly to 1.108 +/- 0.003, indicating that the step in the mechanism involving bond breaking at the 5' carbon of MgATP has a small commitment to catalysis at conditions near Vmax. No alpha-secondary 3H isotope effect from [5'-3H]ATP was detected, (1H/3H) = 1.000 +/- 0.002, even in the absence of KCl. There was no significant primary sulfur isotope effect from [35S]methionine at KCl concentrations from 0 to 10 mM. Substitution of the methyl group of methionine with tritium yielded a beta-secondary isotope effect (CH3/C3H3) = 1.009 +/- 0.008 independent of KCl concentration. The reaction of selenomethionine and [5'-14C]ATP gave a primary isotope effect of 1.097 +/- 0.006, independent of KCl concentration. Substrate trapping experiments demonstrated that the step in the mechanism involving bond making to sulfur of methionine does not have a significant commitment to catalysis at 0.25 mM KCl, therefore intrinsic isotope effects were observed. Substrate trapping experiments indicated that the step involving bond breaking at carbon 5' of MgATP has a 10% commitment to catalysis at 0.25 mM KCl. The isotope effects are interpreted in terms of an Sn2-like transition state structure in which bonding of the C5' is symmetric with respect to the departing tripolyphosphate group and the incoming sulfur of methionine. With selenomethionine as substrate an earlier transition state is implicated.  相似文献   

18.
The reaction mechanism for glycogen synthetase from rabbit muscle was examined by alpha-secondary deuterium isotope effects and positional exchange experiments. Incubation of glycogen synthetase with [beta-18O2,alpha beta-18O]UDP-Glc did not result in any detectable positional isotope exchange from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. Glucono-1,5-lactone was found to be a noncompetitive inhibitor versus UDP-Glc. The kinetic constants, K(is) and K(ii), were found to be 91 +/- 4 microM and 0.70 +/- 0.09 mM, respectively. Deoxynojirimycin was a nonlinear inhibitor at pH 7.5. The alpha-secondary deuterium isotope effects were measured with [1-2H]UDP-Glc by the direct comparison method. The isotope effects on Vmax and Vmax/K were found to be 1.23 +/- 0.04 and 1.09 +/- 0.06, respectively. The inhibitory effects by glucono-lactone and deoxynojirimycon plus the large alpha-secondary isotope effect on Vmax have been interpreted to show that an oxocarbonium ion is an intermediate in this reaction mechanism. The lack of a detectable positional isotope exchange reaction in the absence of glycogen suggests the formation of a rigid tight ion pair between UDP and the oxocarbonium ion intermediate.  相似文献   

19.
Adenosine 5'-phosphate was synthesized with specific heavy atom substitutions to permit measurement of V/K kinetic isotope effects for the N-glycohydrolase activity of the allosteric AMP nucleosidase and the acid-catalyzed solvolysis of these compounds. The effects of allosteric activation on the kinetic isotope effects together with the kinetic mechanism of AMP nucleosidase [DeWolf, W. E., Jr., Emig, F. A., & Schramm, V. L. (1986) Biochemistry 25, 4132-4140] indicate that the kinetic isotope effects are fully expressed. Comparison of individual primary and secondary kinetic isotope effects with combined isotope effects and the isotope effect of the reverse reaction indicated that kinetic isotope effects in AMP nucleosidase arise from a single step in the reaction mechanism. Under these conditions, kinetic isotope effects can be used to interpret transition-state structure for AMP nucleosidase. Changes in kinetic isotope effects occurred as a function of allosteric activator, demonstrating that allosteric activation alters transition-state structure for AMP nucleosidase. Kinetic isotope effects, expressed as [V/K(normal isotope]/[V/K(heavy isotope)], were observed with [2'-2H]AMP (1.061 +/- 0.002), [9-15N]AMP (1.030 +/- 0.003), [1'-2H]AMP (1.045 +/- 0.002), and [1'-14C]AMP (1.035 +/- 0.002) when hydrolyzed by AMP nucleosidase in the absence of MgATP. Addition of MgATP altered the [2'-2H]AMP effect (1.043 +/- 0.002) and the [1'-2H]AMP effect (1.030 +/- 0.003) and caused a smaller decrease of the 14C and 15N effects. Multiple heavy atom substitutions into AMP caused an increase in observed isotope effects to 1.084 +/- 0.004 for [1'-2H,1'-14C]AMP and to 1.058 +/- 0.002 for [9-15N,1'-14C]AMP with the enzyme in the absence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
R H White 《Biochemistry》1989,28(24):9417-9423
The biosynthetic steps involved in the conversion of alpha-ketosuberate to 7-mercaptoheptanoic acid were studied in cell-free extracts of methanogenic bacteria. The pathway was established by measuring the incorporation of stable isotopically labeled precursors into the S-methyl ether methyl ester derivative of the enzymatically generated 7-mercaptoheptanoic acid by using gas chromatography-mass spectrometry (GC-MS). Quantitation of the 7-mercaptoheptanoic acid produced in the incubations with the substrates was accomplished by using an internal standard of 6-mercaptohexanoic acid. [4,4,6,6-2H4]-2-Oxosuberic acid, [7-2H]-7-oxoheptanoic acid, [2-2H]-2(RS)-(5-carboxypentyl)thiazolidine-4(R)-carboxylic acid, and S-(6-carboxyhexyl)cysteine were each shown to be converted to 7-mercaptoheptanoic acid. Incubation of cell extracts with a mixture of 2(RS)-(5-carboxypentyl)thiazolidine-4(R)-carboxylic acid and [2-2H]-2-(RS)-(5-carboxypentyl)-[34S]thiazolidine-4(R)-carboxylic acid showed that both 34S and 2H are incorporated into the 7-mercaptoheptanoic acid but only after separation of the cysteine from the [7-2H]-7-oxyheptanoic acid portion of the molecule. Furthermore, the sulfur from the cysteine was incorporated into the thiol only after its elimination from the cysteine and subsequent mixing with an unlabeled sulfur source which had a molecular weight of sufficient size that it was excluded from Sephadex G-25. Hydrogen sulfide was found to supply the sulfur for the production of the 7-mercaptoheptanoic acid in a reaction that was shown to obtain its reducing equivalents from hydrogen via an F420-dependent hydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号