共查询到20条相似文献,搜索用时 0 毫秒
1.
《Life sciences》1995,57(7):685-694
The metabolism of phosphoinositides plays an important role in the signal transduction pathways. We report here that naturally occuring polyamines affect the activities of phosphatidylinositol (PI) 3-kinase and PI 4-phosphate (PIP) 5-kinase differently. While polyamines inhibited the PI 3-kinase activity, they stimulated the activity of PIP 5-kinase in the order of spermine > spermidine > putrescine. Spermine inhibited the PI 3-kinase activity in a concentration-dependent manner with an IC50 of 100 μM. On the other hand, spermine (5 mH) stimulated the activity of PIP 5-kinase 2–3 fold. Kinetic studies of spermine-mediated inhibition of PI 3-kinase revealed that it was noncompetitive with respect to ATP. The effect of Mg2+ and PIP, concentration on kinase activity was sigmoidal, with spermine inhibiting PI 3-kinase activity at all PIP2 concentrations. While 1 mH calcium stimulated PI 3-kinase activity at submaximal concentrations of Mg2+ (1.25 mH), inhibition was observed at optimal concentration of Mg2+(2 mM). We propose that spermine may modulate the cellular signal by virtue of its differential effects on phosphoinositide kinases. 相似文献
2.
Harrison-Findik D Misra S Jain SK Keeler ML Powell KA Malladi CS Varticovski L Robinson PJ 《Biochimica et biophysica acta》2001,1538(1):10-19
Phosphatidylinositol 3-kinase (PI 3-kinase) plays a role in late stages of endocytosis as well as in cellular proliferation and transformation. The SH3 domain of its regulatory p85 subunit stimulates the GTPase activity of dynamin in vitro. Dynamin is a GTPase enzyme required for endocytosis of activated growth factor receptors. An interaction between these proteins has not been demonstrated in vivo. Here, we report that dynamin associates with PI 3-kinase in hematopoietic cells. We detected both p85 and PI 3-kinase activity in dynamin immune complexes from IL-3-dependent BaF3 cells. However, this association was significantly reduced in BaF3 cells transformed with the BCR/abl oncogene. After transformation only a 4-fold increase in PI 3-kinase activity was detected in dynamin immune complexes, whereas grb2 associated activity was elevated 20-fold. Furthermore, dynamin inhibited the activity of both purified recombinant and immunoprecipitated PI 3-kinase. In BaF3 cells expressing a temperature-sensitive mutant of BCR/abl, a significant decrease in p85 and dynamin association was observed 4 h after the induction of BCR/abl activity. In contrast, in IL-3-stimulated parental BaF3 cells, this association was increased. Our results demonstrate an in vivo association of PI 3-kinase with dynamin and this interaction regulates the activity of PI 3-kinase. 相似文献
3.
4.
5.
6.
Roles of phosphatidylinositol 3-kinase in root hair growth 总被引:2,自引:1,他引:1
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation. 相似文献
7.
Yang KY Arcaroli J Kupfner J Pitts TM Park JS Strasshiem D Perng RP Abraham E 《Cellular signalling》2003,15(2):225-233
Although phosphoinositide 3-kinases (PI3-K) are known to participate in anti-apoptotic pathways, their importance in modulating neutrophil apoptosis in vivo has not been examined. In these studies, we used neutrophils from mice lacking the PI3-Kgamma isoform (PI3-Kgamma-/-) to determine the role that PI3-Kgamma occupies in neutrophil apoptosis under in vivo conditions. We found that neutrophil apoptosis under basal and LPS-stimulated conditions was increased in PI3-Kgamma-/- mice compared to that present in control PI3-Kgamma+/+ animals. Neutrophils from PI3-Kgamma-/- mice demonstrated decreased amounts of active, serine 473 phosphorylated Akt, phosphorylated CREB, and diminished nuclear translocation of NF-kappaB. Levels of the CREB-dependent anti-apoptotic protein Mcl-1 and of the NF-kappaB-dependent anti-apoptotic mediator Bcl-x(L) were significantly decreased in PI3-Kgamma-/- neutrophils. In contrast, PI3-Kgamma-/- neutrophils contained diminished amounts of phosphorylated, inactive forms of the pro-apoptotic mediators, Bad, FKHR, and GSK-3beta. These results demonstrate that PI3-Kgamma directly participates in multiple in vivo pathways involved in regulating neutrophil apoptosis. 相似文献
8.
9.
10.
《Cell cycle (Georgetown, Tex.)》2013,12(3):443-453
Gliomas are primary brain tumors with poor prognosis that exhibit frequent abnormalities in phosphatidylinositol 3-kinase (PI3 kinase) signaling. We investigated the molecular mechanism of action of the isoform-selective Class I PI3 kinase and mTOR inhibitor PI-103 in human glioma cells. The potent inhibitory effects of PI-103 on the PI3 kinase pathway were quantified. PI-103 and the mTOR inhibitor rapamycin both inhibited RPS6 phosphorylation but there were clear differences in the response of upstream components of the PI3 kinase pathway, such as phosphorylation of Thr308-AKT, that were inhibited by PI-103 but not rapamycin. Gene expression profiling identified altered expression of genes encoding regulators of the cell cycle and cholesterol metabolism, and genes modulated by insulin or IGF1 signaling, rapamycin treatment or nutrient starvation. PI-103 decreased expression of positive regulators of G1/S phase progression and increased expression of the negative cell cycle regulator p27kip1. A reversible PI-103-mediated G1 cell cycle arrest occurred without significant apoptosis, consistent with the altered gene expression detected. PI-103 induced vacuolation and processing of LC-3i to LC-3ii, which are features of an autophagic response. In contrast to PI-103, LY294002 and PI-387 induced apoptosis, indicative of likely off-target effects. PI-103 interacted synergistically or additively with cytotoxic agents used in the treatment of glioma, namely vincristine, BCNU and temozolomide. Compared to individual treatments, the combination of PI-103 with temozolomide significantly improved the response of U87MG human glioma xenografts. Our results support the therapeutic potential for PI3 kinase inhibitors with PI-103-like profile as therapeutic agents for the treatment of glioma. 相似文献
11.
Phosphatidylinositol (PI) 3-kinase plays an important role in various cellular signaling mechanisms in several cell systems. The role of PI 3-kinase in adipose differentiation was investigated. For this purpose, we examined the effect of specific inhibitors of PI 3-kinase on the differentiation of two adipogenic cell lines, 1246 and 3T3-L1. The results show that two structurally different inhibitors of PI 3-kinase, i.e., LY294002 and wortmannin, blocked adipose differentiation in a time and dose-dependent fashion. The results from time- course studies indicated that PI 3-kinase activity is most important in the early phase (day 4 to day 6) of the differentiation program. The effect of PI 3-kinase inhibitor on the expression of the peroxisome proliferator-activated receptor (PPAR) γ, a master regulator in adipogenesis induced during the differentiation process, was also examined. LY294002 significantly inhibited the induction of PPARγ mRNA expression. During the initiation phase of adipogenesis (day 4 to day 6), the expression of PPARγ was induced and LY294002 blocked the increase of expression of PPARγ mRNA. The inhibition of expression of PPARγ may provide a molecular mechanism for the action of PI 3-kinase inhibitors on adipose differentiation. J Cell Physiol 178:9–16, 1999. © 1999 Wiley-Liss, Inc. 相似文献
12.
Src transduces erythropoietin-induced differentiation signals through phosphatidylinositol 3-kinase 总被引:6,自引:0,他引:6
Kubota Y Tanaka T Kitanaka A Ohnishi H Okutani Y Waki M Ishida T Kamano H 《The EMBO journal》2001,20(20):5666-5677
In this study, we examined the molecular mechanism of erythropoietin-initiated signal transduction of erythroid differentiation through Src and phosphatidylinositol 3-kinase (PI3-kinase). Antisense oligonucleotides against src but not lyn inhibited the formation of erythropoietin-dependent colonies derived from human bone marrow cells and erythropoietin-induced differentiation of K562 human erythroleukaemia cells. Antisense p85alpha oligonucleotide or LY294002, a selective inhibitor of PI3-kinase, independently inhibited the formation of erythropoietin-dependent colonies. In K562 cells, Src associated with PI3-kinase in response to erythropoietin. Antisense src RNA expression in K562 cells inhibited the erythropoietin-induced activation of PI3-kinase and its association with erythropoietin receptor. PP1, a selective inhibitor of the Src family, reduced erythropoietin-induced tyrosine phosphorylation of erythropoietin receptor and its association with PI3-kinase in F-36P human erythroleukaemia cells. The coexpression experiments and in vitro kinase assay further demonstrated that Src directly tyrosine-phosphorylated erythropoietin receptor, and associated with PI3-kinase. In vitro binding experiments proved that glutathione S-transferase-p85alpha N- or C-terminal SH2 domains independently bound to erythropoietin receptor, which was tyrosine-phosphorylated by Src. Taken together, Src transduces the erythropoietin-induced erythroid differentiation signals by regulating PI3-kinase activity. 相似文献
13.
Cathepsin D (CD) is an essential lysosomal protease and mice lacking this enzyme exhibit neuropathology similar to that observed in brains of patients with neuronal ceroid lipofuscinosces (NCL/Batten disease), a group of autosomal recessive pediatric neurodegenerative diseases. CD-deficient (CD-/-) brains exhibit a dramatic induction of autophagic stress as defined by the aberrant accumulation of autophagosomes, which is concomitant with markers of apoptosis. However, the signaling abnormalities which lead to CD deficiency-induced neurodegeneration are poorly defined. Since phosphatidylinositol-3 kinase (PI3-K) is known to regulate both apoptosis and autophagy, PI3-K-mediated signaling events were assessed in CD-/- brain at P14 and P25-26. Compared to WT littermate controls, CD-/- cortical neurons exhibited a widespread decrease in phosphorylation of Akt (inactivation) and GSK3beta (disinhibition) at P25-26, while levels of total Akt and GSK3beta remained unchanged. This P25-26-specific decrease in phosphorylation of Akt and GSK-3beta in CD-/- brain coincided temporally with markers of apoptosis but followed the induction of autophagic stress observed at both P14 and P25-26. In addition, levels and/or activation of mTOR and Beclin were not affected by CD deficiency, suggesting that the accumulation of autophagosomes is not due to an increased synthesis of autophagosomes but rather from an inhibition of autophagosome recycling, due most likely to a compromise in lysosome function. Together these observations indicate a pronounced decrease in pro-survival PI3-K signaling in CD-/- brain that may contribute to autophagic stress-induced and apoptotic neuropathology. 相似文献
14.
Harada Y Tanabe E Watanabe R Weiss BD Matsumoto A Ariga H Koiwai O Fukui Y Kubo M June CH Abe R 《The Journal of biological chemistry》2001,276(12):9003-9008
15.
M R Gold V W Chan C W Turck A L DeFranco 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(7):2012-2022
Cross-linking of the B cell AgR results in activation of mature B cells and tolerization of immature B cells. The initial signaling events stimulated by membrane immunoglobulin (mIg) cross-linking are tyrosine phosphorylation of a number of proteins. Among the targets of mIg-induced tyrosine phosphorylation are the tyrosine kinases encoded by the lyn, blk, fyn, and syk genes, the mIg-associated proteins MB-1 and Ig-beta, phospholipase C-gamma 1 and -gamma 2, as well as many unidentified proteins. In this report we show that mIg cross-linking also regulates phosphatidylinositol 3-kinase (PtdIns 3-kinase), an enzyme that phosphorylates inositol phospholipids and plays a key role in mediating the effects of tyrosine kinases on growth control in fibroblasts. Cross-linking mIg on B lymphocytes greatly increased the amount of PtdIns 3-kinase activity which could be immunoprecipitated with anti-phosphotyrosine (anti-tyr(P) antibodies. This response was observed after mIg cross-linking in mIgM- and mIgG-bearing B cell lines and after cross-linking either mIgM or mIgD in murine splenic B cells. Thus, regulation of PtdIns 3-kinase is a common feature of signaling by several different isotypes of mIg. This response was rapid and peaked 2 to 3 min after the addition of anti-Ig antibodies. The anti-Ig-stimulated increase in PtdIns 3-kinase activity associated with anti-Tyr(P) immunoprecipitates could reflect increased tyrosine phosphorylation of PtdIns 3-kinase, increased activity of the enzyme, or both. In favor of the first possibility, the tyrosine kinase inhibitor herbimycin A blocked the increase in ant-Tyr(P)-immunoprecipitated PtdIns 3-kinase activity as well as the anti-Ig-induced tyrosine phosphorylation. Moreover, this response was not secondary to phospholipase C activation but rather seemed to be a direct consequence of mIg-induced tyrosine phosphorylation. Activation of the phosphoinositide pathway by a transfected M1 muscarinic acetylcholine receptor expressed in WEHI-231 B lymphoma cells did not increase the amount of PtdIns 3-kinase activity which could be precipitated with anti-Tyr(P) antibodies. Similarly, inhibition of the phosphoinositide pathway did not abrogate the ability of mIg cross-linking to stimulate this response. Thus, mIg-induced tyrosine phosphorylation regulates PtdIns 3-kinase, an important mediator of growth control in fibroblasts and potentially an important regulatory component in B cells as well. 相似文献
16.
Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration 总被引:18,自引:0,他引:18
Reiske HR Kao SC Cary LA Guan JL Lai JF Chen HC 《The Journal of biological chemistry》1999,274(18):12361-12366
We have previously shown that overexpression of focal adhesion kinase (FAK) in Chinese hamster ovary (CHO) cells promoted their migration on fibronectin. This effect was dependent on the phosphorylation of FAK at Tyr-397. This residue was known to serve as a binding site for both Src and phosphatidylinositol 3-kinase (PI3K), implying that either one or both are required for FAK to promote cell migration. In this study, we have examined the role of PI3K in FAK-promoted cell migration. We have demonstrated that the PI3K inhibitors, wortmannin and LY294002, were able to inhibit FAK-promoted migration in a dose-dependent manner. Furthermore, a FAK mutant capable of binding Src but not PI3K was generated by a substitution of Asp residue 395 with Ala. When overexpressed in CHO cells, this differential binding mutant failed to promote cell migration although its association with Src was retained. Together, these results strongly suggest that PI3K binding is required for FAK to promote cell migration and that the binding of Src and p130(Cas) to FAK may not be sufficient for this event. 相似文献
17.
Pasquali C Bertschy-Meier D Chabert C Curchod ML Arod C Booth R Mechtler K Vilbois F Xenarios I Ferguson CG Prestwich GD Camps M Rommel C 《Molecular & cellular proteomics : MCP》2007,6(11):1829-1841
Prior work using lipid-based affinity matrices has been done to investigate distinct sets of lipid-binding proteins, and one series of experiments has proven successful in mammalian cells for the proteome-wide identification of lipid-binding proteins. However, most lipid-based proteomics screens require scaled up sample preparation, are often composed of multiple cell types, and are not adapted for simultaneous signal transduction studies. Herein we provide a chemical proteomics strategy that uses cleavable lipid "baits" with broad applicability to diverse biological samples. The novel baits were designed to avoid preparative steps to allow functional proteomics studies when the biological source is a limiting factor. Validation of the chemical baits was first confirmed by the selective isolation of several known endogenous phosphatidylinositol 3-kinase signaling proteins using primary bone marrow-derived macrophages. The use of this technique for cellular proteomics and MS/MS analysis was then demonstrated by the identification of known and potential novel lipid-binding proteins that was confirmed in vitro for several proteins by direct lipid-protein interactions. Further to the identification, the method is also compatible with subsequent signal transduction studies, notably for protein kinase profiling of the isolated lipid-bound protein complexes. Taken together, this integration of minimal scale proteomics, lipid chemistry, and activity-based readouts provides a significant advancement in the ability to identify and study the lipid proteome of single, relevant cell types. 相似文献
18.
Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation 总被引:13,自引:0,他引:13
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. 相似文献
19.
Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents 总被引:4,自引:0,他引:4
Cadwallader KA Condliffe AM McGregor A Walker TR White JF Stephens LR Chilvers ER 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(6):3336-3344
Neutrophil priming by agents such as TNF-alpha and GM-CSF causes a dramatic increase in the response of these cells to secretagogue agonists and affects the capacity of neutrophils to induce tissue injury. In view of the central role of phosphatidylinositol 3-kinase (PI3-kinase) in regulating NADPH oxidase activity we examined the influence of priming agents on agonist-stimulated phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulation in human neutrophils. Pretreatment of neutrophils with TNF-alpha or GM-CSF, while not influencing fMLP-stimulated PtdIns(3,4,5)P3 accumulation at 5 s, caused a major increase in PtdIns(3,4,5)P3 at later times (10-60 s), which paralleled the augmented superoxide anion (O2-) response. The intimate relationship between PtdIns(3,4,5)P3 accumulation and O2- release was confirmed using platelet-activating factor, which caused full but transient priming of both responses. Likewise, LY294002, a PI3-kinase inhibitor, and genistein, a tyrosine kinase inhibitor, caused parallel inhibition of O2- generation and PtdIns(3,4,5)P3 accumulation; in contrast, radicicol, which inhibits receptor-mediated activation of p85 PI3-kinase, had no effect on either response. Despite major increases in PI3-kinase activity observed in p85 and anti-phosphotyrosine immunoprecipitates in growth factor-stimulated smooth muscle cells, no such increase was observed in primed/stimulated neutrophils. In contrast, both fMLP and TNF-alpha alone caused a 3-fold increase in PI3-kinase activity in p110gamma PI3-kinase immunoprecipitates. p21(ras) activation (an upstream regulator of PI3-kinase) was unaffected by priming. These data demonstrate that timing and magnitude of PtdIns(3,4,5)P3 accumulation in neutrophils correlate closely with O2- generation, that PI3-kinase-gamma is responsible for the enhanced PtdIns(3,4,5)P3 production seen in primed cells, and that factors other than activation of p21(ras) underlie this response. 相似文献
20.
Insulin activation of phosphatidylinositol 3-kinase in human skeletal muscle in vivo 总被引:2,自引:0,他引:2
Hickey Matthew S.; Tanner Charles J.; O'Neill D. Sean; Morgan Lydia J.; Dohm G. Lynis; Houmard Joseph A. 《Journal of applied physiology》1997,83(3):718-722
Hickey, Matthew S., Charles J. Tanner, D. Sean O'Neill,Lydia J. Morgan, G. Lynis Dohm, and Joseph A. Houmard. Insulin activation of phosphatidylinositol 3-kinase in human skeletal muscle invivo. J. Appl. Physiol. 83(3):718-722, 1997.The purpose of this investigation was to determinewhether insulin-stimulated phosphatidylinositol 3-kinase (PI3-kinase)activity is detectable in needle biopsies of human skeletal muscle.Sixteen healthy nonobese males matched for age, percent fat, fastinginsulin, and fasting glucose participated in one of two experimentalprotocols. During an intravenous glucose tolerance test (IVGTT)protocol, insulin-stimulated PI3-kinase activity was determined frompercutaneous needle biopsies at 2, 5, and 15 min post-insulinadministration (0.025 U/kg). In the second group, a 2-h, 100 mU · m2 · min1euglycemic hyperinsulinemic clamp was performed, and biopsies wereobtained at 15, 60, and 120 min after insulin infusion was begun.Insulin stimulated PI3-kinase activity by 1.6 ± 0.2-, 2.2 ± 0.3-, and 2.2 ± 0.4-fold at 2, 5, and 15 min, respectively, duringthe IVGTT. During the clamp protocol, PI3-kinase was elevated by 5.3 ± 1.3-, 8.0 ± 2.6-, and 2.7 ± 1.4-fold abovebasal at 15, 60, and 120 min, respectively. Insulin-stimulatedPI3-kinase activity at 15 min post-insulin administration wassignificantly greater during the clamp protocol vs. the IVGTT(P < 0.05). These observations suggest that insulin-stimulated PI3-kinase activity is detectable inneedle biopsies of human skeletal muscle, and furthermore, that theeuglycemic, hyperinsulinemic clamp protocol may be a useful tool toassess insulin signaling in vivo. 相似文献