首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu MM  Luik RM  Lewis RS 《Cell calcium》2007,42(2):163-172
The means by which Ca(2+) store depletion evokes the opening of store-operated Ca(2+) channels (SOCs) in the plasma membrane of excitable and non-excitable cells has been a longstanding mystery. Indirect evidence has supported local interactions between the ER and SOCs as well as long-range interactions mediated through a diffusible activator. The recent molecular identification of the ER Ca(2+) sensor (STIM1) and a subunit of the CRAC channel (Orai1), a prototypic SOC, has now made it possible to visualize directly the sequence of events that links store depletion to CRAC channel opening. Following store depletion, STIM1 moves from locations throughout the ER to accumulate in ER subregions positioned within 10-25nm of the plasma membrane. Simultaneously, Orai1 gathers at discrete sites in the plasma membrane directly opposite STIM1, resulting in local CRAC channel activation. These new studies define the elementary units of store-operated Ca(2+) entry, and reveal an unprecedented mechanism for channel activation in which the stimulus brings a channel and its activator/sensor together for interaction across apposed membrane compartments. We discuss the implications of this choreographic mechanism with regard to Ca(2+) dynamics, specificity of Ca(2+) signaling, and the existence of a specialized ER subset dedicated to the control of the CRAC channel.  相似文献   

2.
Stromal interacting molecule 1 (STIM1), reported to be an endoplasmic reticulum (ER) Ca(2+) sensor controlling store-operated Ca(2+) entry, redistributes from a diffuse ER localization into puncta at the cell periphery after store depletion. STIM1 redistribution is proposed to be necessary for Ca(2+) release-activated Ca(2+) (CRAC) channel activation, but it is unclear whether redistribution is rapid enough to play a causal role. Furthermore, the location of STIM1 puncta is uncertain, with recent reports supporting retention in the ER as well as insertion into the plasma membrane (PM). Using total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording from single Jurkat cells, we show that STIM1 puncta form several seconds before CRAC channels open, supporting a causal role in channel activation. Fluorescence quenching and electron microscopy analysis reveal that puncta correspond to STIM1 accumulation in discrete subregions of junctional ER located 10-25 nm from the PM, without detectable insertion of STIM1 into the PM. Roughly one third of these ER-PM contacts form in response to store depletion. These studies identify an ER structure underlying store-operated Ca(2+) entry, whose extreme proximity to the PM may enable STIM1 to interact with CRAC channels or associated proteins.  相似文献   

3.
STIM1 and Orai1 have recently been identified to be crucial in the regulation of store-operated Ca(2+) entry. However, it remains to be established how STIM1 couples store depletion to the functioning of Orai1 in the plasma membrane. Using quantitative measurement, we find little STIM1 on the surface membrane which is not increased by store depletion. We further demonstrate that Orai1 assembles into clusters that co-localize with STIM1 aggregations upon store depletion. The clustering of Orai1 is only seen when Oari1 are co-expressed with STIM1, but not when expressed alone. Moreover, ER retreat from cell periphery leads to mismatching of Orai1 and STIM1 puncta. Therefore, we propose that store depletion causes aggregation and translocation of STIM1 in close apposition to the plasma membrane, which in turn recruits Orai1 in the plasma membrane to the sites of STIM1 aggregates to assemble functional units of CRAC channels in a stoichiometric manner.  相似文献   

4.
The activation of Ca(2+) entry through store-operated channels by agonists that deplete Ca(2+) from the endoplasmic reticulum (ER) is an ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past 20 years. In T lymphocytes, store-operated Ca(2+)-release-activated Ca(2+) (CRAC) channels constitute the sole pathway for Ca(2+) entry following antigen-receptor engagement, and their function is essential for driving the program of gene expression that underlies T-cell activation by antigen. The first molecular components of this pathway have recently been identified: stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and Orai1, a pore-forming subunit of the CRAC channel. Recent work shows that CRAC channels are activated in a complex fashion that involves the co-clustering of STIM1 in junctional ER directly opposite Orai1 in the plasma membrane. These studies reveal an abundance of sites where Ca(2+) signaling might be controlled to modulate the activity of T cells during the immune response.  相似文献   

5.
The events leading to the activation of store-operated Ca(2+) entry (SOCE) involve Ca(2+) depletion of the endoplasmic reticulum (ER) resulting in translocation of the transmembrane Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to the junctions between ER and the plasma membrane where it binds to the Ca(2+) channel protein Orai1 to activate Ca(2+) influx. Using confocal and total internal reflection fluorescence microscopy, we studied redistribution kinetics of fluorescence-tagged STIM1 and Orai1 as well as SOCE in insulin-releasing β-cells and glucagon-secreting α-cells within intact mouse and human pancreatic islets. ER Ca(2+) depletion triggered accumulation of STIM1 puncta in the subplasmalemmal ER where they co-clustered with Orai1 in the plasma membrane and activated SOCE. Glucose, which promotes Ca(2+) store filling and inhibits SOCE, stimulated retranslocation of STIM1 to the bulk ER. This effect was evident at much lower glucose concentrations in α- than in β-cells consistent with involvement of SOCE in the regulation of glucagon secretion. Epinephrine stimulated subplasmalemmal translocation of STIM1 in α-cells and retranslocation in β-cells involving raising and lowering of cAMP, respectively. The cAMP effect was mediated both by protein kinase A and exchange protein directly activated by cAMP. However, the cAMP-induced STIM1 puncta did not co-cluster with Orai1, and there was no activation of SOCE. STIM1 translocation can consequently occur independently of Orai1 clustering and SOCE.  相似文献   

6.
Stromal interaction molecule 1 (STIM1) and Orai1 have been identified as crucial elements of the store-operated Ca(2+) entry (SOCE) pathway, but the mechanism of their functional interaction remains controversial. It is now well established that, upon depletion of the stores, both molecules can accumulate and colocalize in specific areas (puncta) where the endoplasmic reticulum comes in close proximity to the plasma membrane. Some models propose a direct interaction between STIM1 and Orai1 as the most straightforward mechanism for signal transduction from the stores to the plasma membrane. To test some of the predictions of a conformational coupling model, we assessed how tight the relationships are between STIM1 and Orai1 expression, puncta formation, and SOCE activation. Here we present evidence that STIM1 accumulates in puncta equally well in the presence or absence of Orai1 expression, that STIM1 accumulation is not sufficient for Orai1 accumulation in the same areas, and that normal Ca(2+) release-activated Ca(2+) current (I(CRAC)) can be activated in STIM1-deficient cells. These data challenge the idea of direct conformational coupling between STIM1 and Orai1 as a viable mechanism of puncta formation and SOCE activation and uncover greater complexity in their relationship, which may require additional intermediate elements.  相似文献   

7.
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.  相似文献   

8.
9.
SOCE (store-operated calcium entry) is a ubiquitous cellular mechanism linking the calcium depletion of the ER (endoplasmic reticulum) to the activation of PM (plasma membrane) Ca2+-permeable channels. The activation of SOCE channels favours the entry of extracellular Ca2+ into the cytosol, thereby promoting the refilling of the depleted ER Ca2+ stores as well as the generation of long-lasting calcium signals. The molecules that govern SOCE activation comprise ER Ca2+ sensors [STIM1 (stromal interaction molecule 1) and STIM2], PM Ca2+-permeable channels {Orai and TRPC [TRP (transient receptor potential) canonical]} and regulatory Ca2+-sensitive cytosolic proteins {CRACR2 [CRAC (Ca2+ release-activated Ca2+ current) regulator 2]}. Upon Ca2+ depletion of the ER, STIM molecules move towards the PM to bind and activate Orai or TRPC channels, initiating calcium entry and store refilling. This molecular rearrangement is accompanied by the formation of specialized compartments derived from the ER, the pre-cER (cortical ER) and cER. The pre-cER appears on the electron microscope as thin ER tubules enriched in STIM1 that extend along microtubules and that are devoid of contacts with the PM. The cER is located in immediate proximity to the PM and comprises thinner sections enriched in STIM1 and devoid of chaperones that might be dedicated to calcium signalling. Here, we review the molecular interactions and the morphological changes in ER structure that occur during the SOCE process.  相似文献   

10.
The coupling mechanism between endoplasmic reticulum (ER) Ca(2+) stores and plasma membrane (PM) store-operated channels (SOCs) remains elusive [1-3]. STIM1 was shown to play a crucial role in this coupling process [4-7]; however, the role of the closely related STIM2 protein remains undetermined. We reveal that STIM2 is a powerful SOC inhibitor when expressed in HEK293, PC12, A7r5, and Jurkat T cells. This contrasts with gain of SOC function in STIM1-expressing cells. While STIM1 is expressed in both the ER and plasma membrane, STIM2 is expressed only intracellularly. Store depletion induces redistribution of STIM1 into distinct "puncta." STIM2 translocates into puncta upon store depletion only when coexpressed with STIM1. Double labeling shows coincidence of STIM1 and STIM2 within puncta, and immunoprecipitation reveals direct interactions between STIM1 and STIM2. Independent of store depletion, STIM2 colocalizes with and blocks the function of a STIM1 EF-hand mutant that preexists in puncta and is constitutively coupled to activate SOCs. Thus, whereas STIM1 is a required mediator of SOC activation, STIM2 is a powerful inhibitor of this process, interfering with STIM1-mediated SOC activation at a point downstream of puncta formation. The opposing functions of STIM1 and STIM2 suggest they may play a coordinated role in controlling SOC-mediated Ca(2+) entry signals.  相似文献   

11.
We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca(2+)-selective current with Ca(2+)-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca(2+) release-activated Ca(2+) (CRAC)-like current while retaining an inwardly rectifying I-V characteristic. Expression of the C-terminal portion of STIM1 with Orai1 was sufficient to generate CRAC current without store depletion. 2-APB activated a large relatively nonselective current in STIM1 and Orai3 co-expressing cells. 2-APB also induced Ca(2+) influx in Orai3-expressing cells without store depletion or co-expression of STIM1. The Orai3 current induced by 2-APB exhibited outward rectification and an inward component representing a mixed calcium and monovalent current. A pore mutant of Orai3 inhibited store-operated Ca(2+) entry and did not carry significant current in response to either store depletion or addition of 2-APB. Analysis of a series of Orai1-3 chimeras revealed the structural determinant responsible for 2-APB-induced current within the sequence from the second to third transmembrane segment of Orai3. The Orai3 current induced by 2-APB may reflect a store-independent mode of CRAC channel activation that opens a relatively nonselective cation pore.  相似文献   

12.
He J  Yu T  Pan J  Li H 《PloS one》2012,7(3):e33377
Store-operated Ca(2+) channels are a major Ca(2+) entry pathway in nonexcitable cells, which drive various essential cellular functions. Recently, STIM1 and Orai proteins have been identified as the major molecular components of the Ca(2+) release-activated Ca(2+) (CRAC) channel. As the key subunit of the CRAC channel, STIM1 is the ER Ca(2+) sensor and is essential for the recruitment and activation of Orai1. However, the mechanisms in transmission of information of STIM1 to Orai1 still need further investigation. Bimolecular fluorescence complementation (BiFC) is one of the most advanced and powerful tools for studying and visualising protein-protein interactions in living cells. We utilised BiFC and acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments to visualise and determine the state of STIM1 in the living cells in resting state. Our results demonstrate that STIM1 exists in an oligomeric form in resting cells and that rather than the SAM motif, it is the C-terminus (residues 233-474) of STIM1 that is the key domain for the interaction between STIM1s. The STIM1 oligomers (BiFC-STIM1) and wild-type STIM1 colocalised and had a fibrillar distribution in resting conditions. Depletion of ER Ca(2+) stores induced BiFC-STIM1 distribution to become punctate, an effect that could be prevented or reversed by 2-APB. After depletion of the Ca(2+) stores, BiFC-STIM1 has the ability to form puncta that colocalise with wild-type STIM1 or Orai1 near the plasma membrane. Our data also indicate that the function of BiFC-STIM1 was not altered compared with that of wild-type STIM1.  相似文献   

13.
The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca(2+)entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca(2+) entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca(2+) entry. STIM proteins are known to mediate Ca(2+) store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca(2+) entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.  相似文献   

14.
Gao S  Fan Y  Chen L  Lu J  Xu T  Xu P 《Cell calcium》2009,45(1):77-88
Recent studies have identified STIM1 and Orai1 as essential and conserved components of the Ca2+ release-activated Ca2+ (CRAC) channel. However, the reason STIM1 exhibits different distributions in nematode Caenorhabditis elegans and in human cells before endoplasmic reticulum (ER) calcium store depletion has not been clarified. Compared to the diffuse ER distribution of human STIM1 (H.STIM1), we found that C. elegans STIM1 (C.STIM1) was pre-oligomerized in puncta at the cell periphery before Ca2+ store depletion when expressed in HEK293 cells. Interestingly, these C.STIM1 puncta failed to induce aggregation of C. elegans Orai1 (C.Orai1), and no CRAC current was detected in quiescent cells. However, upon store depletion, C.Orai1 and C.STIM1 functioned as a pair to locally sense the store depletion signal and to activate the CRAC channel. We substituted the N-terminus of H.STIM1 for the N-terminus of C.STIM1 (H_C.STIM1), which resulted in pre-puncta resting localization. In contrast, by replacing the C-terminus of C.STIM1 with that of H.STIM1, we made a chimeric protein (C.STIM1_H) that exhibited two distribution profiles at resting state, a diffuse ER pattern like H.STIM1, and large aggregates. Taken together, our results suggest that (1) despite highly conserved functional domains, C. elegans STIM1 and human STIM1 display different spatial distributions in HEK293 cells before store depletion; (2) the C.STIM1 puncta at peripheral sites are not sufficient for the aggregation and activation of C.Orai1 in the absence of store depletion; (3) the distinct distributions of C.STIM1 and H.STIM1 at resting state are determined by the cytoplasmic region of STIM1.  相似文献   

15.
Intracellular Ca(2+) is essential for diverse cellular functions. Ca(2+) entry into many cell types including immune cells is triggered by depleting endoplasmic reticulum (ER) Ca(2+), a process termed store-operated Ca(2+) entry (SOCE). STIM1 is an ER Ca(2+) sensor. Upon Ca(2+) store depletion, STIM1 clusters at ER-plasma membrane junctions where it interacts with and gates Ca(2+)-permeable Orai1 ion channels. Here we show that STIM1 is also activated by temperature. Heating cells caused clustering of STIM1 at temperatures above 35 °C without depleting Ca(2+) stores and led to Orai1-mediated Ca(2+) influx as a heat off-response (response after cooling). Notably, the functional coupling of STIM1 and Orai1 is prevented at high temperatures, potentially explaining the heat off-response. Additionally, physiologically relevant temperature shifts modulate STIM1-dependent gene expression in Jurkat T cells. Therefore, temperature is an important regulator of STIM1 function.  相似文献   

16.
Our understanding of the nature and regulation of receptor-activated Ca(2+) entry in nonexcitable cells has recently undergone a radical change that began with the identification of the stromal interacting molecule proteins (e.g., STIM1) as playing a critical role in the regulation of the capacitative, or store-operated, Ca(2+) entry. As such, current models emphasize the role of STIM1 located in the endoplasmic reticulum membrane, where it senses the status of the intracellular Ca(2+) stores via a luminal N-terminal Ca(2+)-binding EF-hand domain. Dissociation of Ca(2+) from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca(2+) channels (e.g., CRAC channels). Thus, the specific dependence on store-depletion, and the role of the Ca(2+)-binding EF-hand domain in this process, are critical to all current models of the action of STIM1 on Ca(2+) entry. However, until recently, the effects of STIM1 on other modes of receptor-activated Ca(2+) entry have not been examined. Surprisingly, we found that STIM1 exerts similar, although not identical, actions on the arachidonic acid-regulated Ca(2+)-selective (ARC) channels-a widely expressed mode of agonist-activated Ca(2+) entry whose activation is completely independent of Ca(2+) store depletion. Regulation of the ARC channels by STIM1 is not only independent of store depletion, but also of the Ca(2+)-binding function of the EF-hand, and translocation of STIM1 to the plasma membrane. Instead, it is the pool of STIM1 that constitutively resides in the plasma membrane that is critical for the regulation of the ARC channels. Thus, ARC channel activity is selectively inhibited by exposure of intact cells to an antibody targeting the extracellular N-terminal domain of STIM1. Similarly, introducing mutations in STIM1 that prevent the N-linked glycosylation-dependent constitutive expression of the protein in the plasma membrane specifically inhibits the activity of the ARC channels without affecting the CRAC channels. These studies demonstrate that STIM1 is a far more universal regulator of Ca(2+) entry pathways than previously assumed, and has multiple, and entirely distinct, modes of action. Precisely how this same protein can act in such separate and specific ways on these different pathways of agonist-activated Ca(2+)entry remains an intriguing, yet currently unresolved, question.  相似文献   

17.
Li Z  Lu J  Xu P  Xie X  Chen L  Xu T 《The Journal of biological chemistry》2007,282(40):29448-29456
STIM1 and Orai1 are essential components of Ca(2+) release-activated Ca(2+) channels (CRACs). After endoplasmic reticulum Ca(2+) store depletion, STIM1 in the endoplasmic reticulum aggregates and migrates toward the cell periphery to co-localize with Orai1 on the opposing plasma membrane. Little is known about the roles of different domains of STIM1 and Orai1 in protein clustering, migration, interaction, and, ultimately, opening CRAC channels. Here we demonstrate that the coiled-coil domain in the C terminus of STIM1 is crucial for its aggregation. Amino acids 425-671 of STIM1, which contain a serine-proline-rich region, are important for the correct targeting of the STIM1 cluster to the cell periphery after calcium store depletion. The polycationic region in the C-terminal tail of STIM1 also helps STIM1 targeting but is not essential for CRAC channel activation. The cytoplasmic C terminus but not the N terminus of Orai1 is required for its interaction with STIM1. We further identify a highly conserved region in the N terminus of Orai1 (amino acids 74-90) that is necessary for CRAC channel opening. Finally, we show that the transmembrane domain of Orai1 participates in Orai1-Orai1 interactions.  相似文献   

18.
Cytosolic Ca(2+) signals encoded by repetitive Ca(2+) releases rely on two processes to refill Ca(2+) stores: Ca(2+) reuptake from the cytosol and activation of a Ca(2+) influx via store-operated Ca(2+) entry (SOCE). However, SOCE activation is a slow process. It is delayed by >30 s after store depletion because stromal interaction molecule 1 (STIM1), the Ca(2+) sensor of the intracellular stores, must form clusters and migrate to the membrane before being able to open Orai1, the plasma membrane Ca(2+) channel. In this paper, we identify a new protein, STIM1L, that colocalizes with Orai1 Ca(2+) channels and interacts with actin to form permanent clusters. This property allowed the immediate activation of SOCE, a characteristic required for generating repetitive Ca(2+) signals with frequencies within seconds such as those frequently observed in excitable cells. STIM1L was expressed in several mammalian tissues, suggesting that many cell types rely on this Ca(2+) sensor for their Ca(2+) homeostasis and intracellular signaling.  相似文献   

19.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

20.
《Biophysical journal》2020,118(1):70-84
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility—measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient—decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号