首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   

3.
4.
Small interfering RNA (siRNA) is a potent means of inducing gene-specific silencing. Gene silencing strategies using siRNA have demonstrated therapeutic benefits in animal models of various diseases, and are currently in clinical trials. However, the utility of gene silencing as a treatment for allergic diseases has not yet been reported. In this study, we report a novel therapy for allergy through gene silencing of CD40, a critical costimulatory molecule and a key factor in allergic immune responses. Silencing CD40 resulted in generation of immunoregulatory dendritic cells (DCs). Administration of CD40 siRNA remarkably reduced nasal allergic symptoms and local eosinophil accumulation in the OVA-induced allergic mice. The OVA-specific T cell response was inhibited after the CD40 siRNA treatment. Additionally, anti-OVA specific IgE and production of IL-4 and IL-5 of T cells stimulated by OVA were significantly decreased in CD40 siRNA-treated mice. Furthermore, we demonstrated that the therapeutic effects by CD40 siRNA were associated with impaired Ag-presenting functions of DCs and B cells, and generation of regulatory T cells. The present study highlights a therapeutic potential of siRNA-based treatment for allergic diseases.  相似文献   

5.
6.
IL-6 production by pulmonary dendritic cells impedes Th1 immune responses   总被引:11,自引:0,他引:11  
Mucosal tissues, such as the lung, are continually exposed to both foreign and environmental Ags. To counter the potential inflammatory tissue injury of chronic Th1-mediated responses against these Ags, mucosal sites may skew toward Th2 immune responses. However, the mechanism by which this occurs is unknown. Dendritic cells (DC), as orchestrators of the immune response, skew Th1/Th2 differentiation by cytokine secretion and expression of specific cell surface markers. We compared DC from mucosal and systemic locations. In this study, we show that the lung lacks a CD8alpha(+) DC subpopulation and contains DC that appear less mature than splenic DC. Furthermore, we demonstrate that pulmonary DC produce significant levels of IL-6 and fail to produce the Th1-polarizing cytokine IL-12. Importantly, we demonstrate that IL-6 negatively regulates IL-12 production, as pulmonary DC from IL-6(-/-) mice produce significant levels of IL-12 and induce Th1 polarization of naive CD4(+) T cells. Furthermore, we demonstrate that IL-6 is sufficient to explain the differential polarizing abilities of pulmonary and splenic DC, as splenic DC cocultures supplemented with IL-6 polarize naive T cells toward Th2, and pulmonary DC cultures in which IL-6 was removed with neutralizing Ab resulted in more Th1 polarization, pointing to IL-6 as the mechanism of Th2 polarization in the lung. We propose that the Th2 response seen in the lung is due to DC-mediated inhibition of Th1 responses via IL-6 production, rather than enhanced Th2 responses, and that this regulation decreases the likelihood of chronic inflammatory pathology in the lung.  相似文献   

7.
BACKGROUND: RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS: In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS: The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS: The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.  相似文献   

8.
To gain insight into the defects responsible for impaired Th1 responses in human newborns, we analyzed the production of cytokines by dendritic cells (DC) derived from cord blood monocytes. We observed that neonatal DC generated from adherent cord blood mononuclear cells cultured for 6 days in the presence of IL-4 and GM-CSF show a phenotype similar to adult DC generated from adherent PBMC, although they express lower levels of HLA-DR, CD80, and CD40. Measurement of cytokine levels produced by neonatal DC upon stimulation by LPS, CD40 ligation, or poly(I:C) indicated a selective defect in the synthesis of IL-12. Determination of IL-12(p40) and IL-12(p35) mRNA levels by real-time RT-PCR revealed that IL-12(p35) gene expression is highly repressed in stimulated neonatal DC whereas their IL-12(p40) gene expression is not altered. The addition of rIFN-gamma to LPS-stimulated newborn DC restored their expression of IL-12(p35) and their synthesis of IL-12 (p70) up to adult levels. Moreover, we observed that neonatal DC are less efficient than adult DC to induce IFN-gamma production by allogenic adult CD4(+) T cells. This defect was corrected by the addition of rIL-12. We conclude that neonatal DC are characterized by a severe defect in IL-12(p35) gene expression which is responsible for an impaired ability to elicit IFN-gamma production by T cells.  相似文献   

9.
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-kappaB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-kappaB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IkappaB-alpha phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction.  相似文献   

10.
The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counterregulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.  相似文献   

11.
Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).  相似文献   

12.
IL-12 induction is critical for immune responses against many viruses and intracellular bacterial pathogens. Recent studies suggest that IL-12-secreting dendritic cells (DC) are potent Th1-inducing APC. However, controversy exists concerning the function of DC subsets. Murine studies have suggested that CD8(+) DC preferentially induce Th1 responses, whereas CD8(-) DC induce Th2 development; in this model, different DC subsets prime different responses. Alternatively, the propensity of DC subsets to prime a Th1 response could depend upon the type of initial stimulus. We used a prototypic Th1-inducing adjuvant, heat-killed Brucella abortus (HKBA) to assess stimulation of DC subsets, relationship between Ag burden and IL-12 production, and down-regulation of DC subset IL-12 production by IL-10. In this study, we show that DC were sole producers of IL-12, although most HKBA uptake was by splenic macrophages and granulocytes. More CD8(-) than CD8(+) DC produced IL-12 after HKBA challenge, whereas only CD8(+) DC produced IL-12 after injection of another Th1-promoting microbial substance, soluble Toxoplasma gondii Ags. Studies in IL-10-deficient mice revealed that IL-10 down-regulates frequency and duration of IL-12 production by both DC subsets. In the absence of IL-10, IL-12 expression is enabled in CD11c(low) cells, but not in macrophages or granulocytes. These findings support the concept of DC as the major IL-12 producers in spleens, but challenge the notion that CD8(+) and CD8(-) DC are destined to selectively induce Th1 or Th2 responses, respectively. Thus, the nature of the stimulating substance is important in determining which DC subsets are activated to produce IL-12.  相似文献   

13.
NADPH oxidase-2 (Nox2)/gp91(phox) and p47(phox) deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS) as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNγ/LPS matured p47(phox-/-)-ROS deficient mouse dendritic cells (DC) secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNγ/LPS matured p47(phox-/-) DC bias more ovalbumin-specific CD4(+) T lymphocytes toward a Th1 phenotype than wild type (WT) DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation. The Nox2-dependent ROS production in DC negatively regulates proinflammatory IL-12 expression in DC by constraining p38-MAPK activity. Increasing endogenous H(2)O(2) attenuates p38-MAPK activity in IFNγ/LPS stimulated WT and p47(phox-/-) DC, which suggests that endogenous Nox 2-derived ROS functions as a secondary messenger in the activated p38-MAPK signaling pathway during IL-12 expression. These findings indicate that ROS, generated endogenously by innate and adaptive immune cells, can function as important secondary messengers that can regulate cytokine production and immune cell cross-talk to control during the inflammatory response.  相似文献   

14.
Dendritic cells (DC) constitute a complex system of uniquely specialized antigen-presenting cells (APC) that play crucial roles in the initiation and regulation of immune responses. Recent studies have demonstrated that DC silenced by siRNA IL-12 p35 showed tolerogenic capacity in vitro. However, their mechanism of action is not fully understood. In this study, IL-12p35 siRNA was chemically synthesized and transfected into DCs. A coculture of T cells and DCs was performed. After 30 min coculture, T cells were harvested and analyzed. We showed that the IL-12 p35 silenced DCs decreased IL-12-induced T cell responses through blocking tyrosine phosphorylation of JAK2, TYK2, STAT3, and STAT4 proteins in T cells. These results demonstrate IL-12 p35 silenced DCs modulate immune responses by blocking IL-12 signaling through JAK-STAT pathway in T cells.  相似文献   

15.
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.Subject terms: Cancer microenvironment, Extracellular signalling molecules  相似文献   

16.
TLR ligands are potent adjuvants and promote Th1 responses to coadministered Ags by inducing innate IL-12 production. We found that TLR ligands also promote the induction of IL-10-secreting regulatory T (Treg) cells through p38 MAPK-induced IL-10 production by dendritic cells (DC). Inhibition of p38 suppressed TLR-induced IL-10 and PGE(2) and enhanced IL-12 production in DC. Incubation of Ag-pulsed CpG-stimulated DC with a p38 inhibitor suppressed their ability to generate Treg cells, while enhancing induction of Th1 cells. In addition, inhibition of p38 enhanced the antitumor therapeutic efficacy of DC pulsed with Ag and CpG and this was associated with an enhanced frequency of IFN-gamma-secreting T cells and a reduction of Foxp3(+) Treg cells infiltrating the tumors. Furthermore, addition of a p38 inhibitor to a pertussis vaccine formulated with CpG enhanced its protective efficacy in a murine respiratory challenge model. These data demonstrate that the adjuvant activity of TLR agonists is compromised by coinduction of Treg cells, but this can be overcome by inhibiting p38 signaling in DC. Our findings suggest that p38 is an important therapeutic target and provides a mechanism to enhance the efficacy of TLR agonists as vaccine adjuvants and cancer immunotherapeutics.  相似文献   

17.
The effect of RNA interference (RNAi) is generally more potent in Drosophila Schneider 2 (S2) cells than in mammalian cells. In mammalian cells, PolIII promoter-based DNA vectors can be used to express small interfering RNA (siRNA) or short hairpin RNA (shRNA); however, this has not been demonstrated in cultured Drosophila cells. Here we show that shRNAs transcribed from the Drosophila U6 promoter can efficiently trigger gene silencing in S2 cells. By targeting firefly luciferase mRNA, we assessed the efficacy of the shRNAs and examined the structural requirements for highly effective shRNAs. The silencing effect was dependent on the length of the stem region and the sequence of the loop region. Furthermore, we demonstrate that the expression of the endogenous cyclin E protein can be repressed by the U6 promoter-driven shRNAs. Drosophila U6 promoter-based shRNA expression systems may permit stable gene silencing in S2 cells.  相似文献   

18.
Dendritic cells (DC) are key initiators of primary immune responses. Myeloid DC can secrete IL-12, a potent Th1-driving factor, and are often viewed as Th1-promoting APC. Here we show that neither a Th1- nor a Th2-inducing function is an intrinsic attribute of human myeloid DC, but both depend on environmental instruction. Uncommitted immature DC require exposure to IFN-gamma, at the moment of induction of their maturation or shortly thereafter, to develop the capacity to produce high levels of IL-12p70 upon subsequent contact with naive Th cells. This effect is specific for IFN-gamma and is not shared by other IL-12-inducing factors. Type 1-polarized effector DC, matured in the presence of IFN-gamma, induce Th1 responses, in contrast to type 2-polarized DC matured in the presence of PGE2 that induce Th2 responses. Type 1-polarized effector DC are resistant to further modulation, which may facilitate their potential use in immunotherapy.  相似文献   

19.
Persistent activation of STAT3 plays a major role in cancer progression and immune escape. Therefore, targeting STAT3 in tumors is essential to enhance/reactivate antitumor immune response. In our previous studies, we demonstrated the efficacy of stearic acid-modified polyethylenimine (PEI-StA) in promoting small interfering RNA (siRNA) silencing of STAT3 in B16.F10 melanoma in vitro and in vivo. In the current study, we examine the immunologic impact of this intervention. Toward this goal, the infiltration and activation of lymphocytes and dendritic cells (DCs) in the tumor mass were assessed using flow cytometry. Moreover, the levels of IFN-γ, IL-12, and TNF-α in homogenized tumor supernatants were determined. Moreover, mixed lymphocytes reaction using splenocytes of tumor-bearing mice was used to assess DC functionality on siRNA/lipopolyplexes intervention. Our results demonstrated up to an approximately fivefold induction in the infiltration of CD3(+) cells in tumor mass on STAT3 knockdown with high levels of CD4(+), CD8(+), and NKT cells. Consistently, DC infiltration in tumor milieu increased up to approximately fourfold. Those DCs were activated, in an otherwise suppressive microenvironment, as evidenced by a high expression of costimulatory molecules CD86 and CD40. ELISA analysis revealed a significant increase in IFN-γ, IL-12, and TNF-α. Moreover, mixed lymphocytes reaction demonstrated alloreactivity of these DCs as assessed by high T-cell proliferation and IL-2 production. Our results suggest a bystander immune response after local STAT3 silencing by siRNA. This strategy could be beneficial as an adjuvant therapy along with current cancer vaccine formulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号