首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,121(5):1021-1029
We have continued our studies on the import pathway of the precursor to yeast cytochrome c oxidase subunit Va (pVa), a mitochondrial inner membrane protein. Previous work on this precursor demonstrated that import of pVa is unusually efficient, and that inner membrane localization is directed by a membrane-spanning domain in the COOH- terminal third of the protein. Here we report the results of studies aimed at analyzing the intramitochondrial sorting of pVa, as well as the role played by ancillary factors in import and localization of the precursor. We found that pVa was efficiently imported and correctly sorted in mitochondria prepared from yeast strains defective in the function of either mitochondrial heat shock protein (hsp)60 or hsp70. Under identical conditions the import and sorting of another mitochondrial protein, the precursor to the beta subunit of the F1 ATPase, was completely defective. Consistent with previous results demonstrating that the subunit Va precursor is loosely folded, we found that pVa could be efficiently imported into mitochondria after translation in wheat germ extracts. This results suggests that normal levels of extramitochondrial hsp70 are also not required for import of the protein. The results of this study enhance our understanding of the mechanism by which pVa is routed to the mitochondrial inner membrane. They suggest that while the NH2 terminus of pVa is exposed to the matrix and processed by the matrix metalloprotease, the protein remains anchored to the inner membrane before being assembled into a functional holoenzyme complex.  相似文献   

2.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

3.
Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocation.  相似文献   

4.
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.  相似文献   

5.
MOM19, an import receptor for mitochondrial precursor proteins   总被引:40,自引:0,他引:40  
T S?llner  G Griffiths  R Pfaller  N Pfanner  W Neupert 《Cell》1989,59(6):1061-1070
We have identified a 19 kd protein of the mitochondrial outer membrane (MOM19). Monospecific IgG and Fab fragments directed against MOM19 inhibit import of precursor proteins destined for the various mitochondrial subcompartments, including porin, cytochrome c1, Fe/S protein, F0 ATPase subunit 9, and F1 ATPase subunit beta. Inhibition occurs at the level of high affinity binding of precursors to mitochondria. Consistent with previous functional studies that suggested the existence of distinct import sites for ADP/ATP carrier and cytochrome c, we find that import of those precursors is not inhibited. We conclude that MOM19 is identical to, or closely associated with, a specific mitochondrial import receptor.  相似文献   

6.
M Eilers  W Oppliger    G Schatz 《The EMBO journal》1987,6(4):1073-1077
We have investigated the energy requirement of mitochondrial protein import with a simplified system containing only isolated yeast mitochondria, energy sources and a purified precursor protein. This precursor was a fusion protein composed of 22 residues of the cytochrome oxidase subunit IV pre-sequence fused to mouse dihydrofolate reductase. Import of this protein required not only an energized inner membrane, but also ATP. ATP could be replaced by GTP, but not by CTP, TTP or non-hydrolyzable ATP analogs. Added ATP did not increase the membrane potential of respiring mitochondria; it supported import even if the proton-translocating mitochondrial ATPase and the entry of ATP into the matrix were blocked. We conclude that ATP exerts its effect on mitochondrial protein import outside the inner membrane.  相似文献   

7.
We describe a novel method for enhancing protein import into mitochondria, by tandemly duplicating the N-terminal cleavable leader peptide using a gene manipulation strategy. The import into isolated yeast mitochondria of passenger proteins (yeast mitochondrial ATP synthase subunits 8 and 9 and some mutagenised derivatives) that show little or no import when endowed with one such leader (that of Neurospora crassa mitochondrial ATP synthase subunit 9) is remarkably improved when the leader is tandemly duplicated. The import of these chimaeric proteins bearing a double leader is so rapid that a series of partially processed precursor intermediates accumulates inside the mitochondria before the final proteolytic release of leader sequences from the passenger proteins. It is considered that the duplicated leader greatly accelerates delivery of the import precursors to outer membrane receptor elements and the associated translocation systems, thereby enhancing precursor uptake into mitochondria.  相似文献   

8.
N Pfanner  W Neupert 《FEBS letters》1986,209(2):152-156
Transport of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane requires a mitochondrial membrane potential. We have studied whether additional energy sources are also necessary for protein translocation. Reticulocyte lysate (containing radiolabelled precursor proteins) and mitochondria were depleted of ATP by pre-incubation with apyrase. A membrane potential was then established by the addition of substrates of the electron transport chain. Oligomycin was included to prevent dissipation of delta psi by the action of the F0F1-ATPase. Under these conditions, import of subunit beta of F1-ATPase (F1 beta) was inhibited. Addition of ATP or GTP restored import. When the membrane potential was destroyed, however, the import of F1 beta was completely inhibited even in the presence of ATP. We therefore conclude that the import of F1 beta depends on both nucleoside triphosphates and a membrane potential.  相似文献   

9.
Many nuclear-coded mitochondrial proteins are synthesized as larger precursor polypeptides that are proteolytically processed during import into the mitochondrion. This processing appears to be catalyzed by a soluble, metal-dependent protease localized in the mitochondrial matrix. In this report we employ an in vitro system to investigate the role of processing in protein import. Intact Neurospora crassa mitochondria were incubated with radiolabeled precursors in the presence of the chelator o-phenanthroline. Under these conditions, the processing of the precursors of the beta-subunit of F1-ATPase (F1 beta) and subunit 9 of the F0F1-ATPase was strongly inhibited. Protease-mapping studies indicated that import of the precursor proteins into the mitochondria continued in the absence of processing. Upon readdition of divalent metal to the treated mitochondria, the imported precursors were quantitatively converted to their mature forms. This processing of imported precursors occurred in the absence of a mitochondrial membrane potential and was extremely rapid even at 0 degrees C. This suggests that all or part of the polypeptide chain of the imported precursors had been translocated into the matrix location of the processing enzyme. Localization experiments suggested that the precursor to F1 beta is peripherally associated with the mitochondrial membrane while the precursor to subunit 9 appeared to be tightly bound to the membrane. We conclude that proteolytic processing is not necessary for the translocation of precursor proteins across mitochondrial membranes, but rather occurs subsequent to this event. On the basis of these and other results, a hypothetical pathway for the import of F1 beta and subunit 9 is proposed.  相似文献   

10.
We show that a synthetic peptide corresponding to the N-terminal 22 residues of the cytochrome c oxidase subunit IV presequence blocked import of pre-subunit IV into yeast mitochondria. The 22-residue peptide pL4-(1-22) did not alter the electrical potential across the mitochondrial inner membrane (the delta psi). Inhibition of import was reversible and could be overcome by the addition of increased amounts of precursor. Two other peptides, pL4-(1-16) and pL4-(1-23), which correspond to, respectively, the N-terminal 16 and 23 residues of the same presequence, also blocked import of pre-subunit IV. However, pL4-(1-16) was a much weaker inhibitor of import, while the inhibitory effect of pL4-(1-23) was due to its ability to completely collapse the delta psi. pL4-(1-22) seems to be a general inhibitor of mitochondrial import, in that it also blocked uptake of several other proteins. These included the precursors of the yeast proteins cytochrome c oxidase subunit Va, the F1-ATPase beta subunit, mitochondrial malate dehydrogenase, and the ATP/ADP carrier. In addition, uptake of two non-yeast precursor proteins (human ornithine transcarbamylase and a cytochrome oxidase subunit IV-dihydrofolate reductase fusion), was also blocked by the peptide. Subsequent studies revealed that pL4-(1-22) did not block the initial recognition or binding of proteins to mitochondria. Rather, our results suggest that the peptide acts at a subsequent translocation step which is common to the import pathways of many different precursor proteins.  相似文献   

11.
ATP is needed for the import of precursor proteins into mitochondria. However, the role of ATP and its site of action have been unclear. We have now investigated the ATP requirements for protein import into the mitochondrial matrix. These experiments employed an in vitro system that allowed ATP levels to be manipulated both inside and outside the mitochondrial inner membrane. Our results indicate that there are two distinct ATP requirements for mitochondrial protein import. ATP in the matrix is always needed for complete import of precursor proteins into this compartment, even when the precursors are presented to mitochondria in an unfolded conformation. In contrast, the requirement for external ATP is precursor-specific; depletion of external ATP strongly inhibits import of some precursors but has little or no effect with other precursors. A requirement for external ATP can often be overcome by denaturing the precursor with urea. We suggest that external ATP promotes the release of precursors from cytosolic chaperones, whereas matrix ATP drives protein translocation across the inner membrane.  相似文献   

12.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

13.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

14.
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.  相似文献   

15.
T Komiya  M Sakaguchi    K Mihara 《The EMBO journal》1996,15(2):399-407
Two ATP-dependent cytosolic chaperones, mitochondrial import stimulation factor (MSF) and hsp70, are known to be involved in the import of precursor proteins into mitochondria. Hsp70 generally recognizes unfolded proteins, while MSF specifically recognizes mitochondrial precursor proteins and targets them to mitochondria in a NEM-sensitive manner. Here we analyzed the relative contribution of these chaperones in the import process and confirmed that the precursor proteins are targeted to mitochondria via two distinct pathways: one requiring MSF and the other requiring hsp70. Both pathways depend on distinct proteinaceous components of the outer mitochondrial membrane. The MSF-dependent pathway is NEM-sensitive and requires the hydrolysis of extra-mitochondrial ATP for the release of MSF from the mitochondrial import receptor, whereas the hsp70-dependent pathway is NEM-sensitive and does not require extra-mitochondrial ATP. The NEM-insensitive, hsp70-dependent import became NEM-sensitive depending on the amount of MSF added. The relative importance of the two pathways appears to be determined by the affinities of MSF and hsp70 for the precursor proteins.  相似文献   

16.
We have examined the import and intramitochondrial localization of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. The results of studies on the import of subunit Va derivatives carrying altered presequences suggest that the uptake of this protein is highly efficient. We found that a presequence of only 5 amino acids (Met-Leu-Ser-Leu-Arg) could direct the import and localization of subunit Va with wild-type efficiency, as judged by several different assays. We also found that subunit Va could be effectively targeted to the mitochondrial inner membrane with a heterologous presequence that failed to direct import of its cognate protein. The results presented here confirmed those of an earlier study and showed clearly that the information required to "sort" subunit Va to the inner membrane resides in the mature protein sequence, not within the presequence per se. We present additional evidence that the aforementioned sorting information is contained, at least in part, in a hydrophobic stretch of 22 amino acids residing within the C-terminal third of the protein. Removal of this domain caused subunit Va to be mislocalized to the mitochondrial matrix.  相似文献   

17.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

18.
N Pfanner  W Neupert 《The EMBO journal》1985,4(11):2819-2825
The transfer of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane is dependent on energization of the membrane. To investigate the role of this energy requirement, a buffer system was developed in which efficient import of ADP/ATP carrier into mitochondria from the receptor-bound state occurred. This import was rapid and was dependent on divalent cations, whereas the binding of precursor proteins to the mitochondrial surface was slow and was independent of added divalent cations. Using this buffer system, the import of ADP/ATP carrier could be driven by a valinomycin-induced potassium diffusion potential. The protonophore carbonylcyanide m-chlorophenyl-hydrazone was not able to abolish this import. Imposition of a delta pH did not stimulate the import. We conclude that the membrane potential delta psi itself and not the total protonmotive force delta p is the required energy source.  相似文献   

19.
The mechanism of import of proteins into mitochondria was studied by using the peptide of the presequence of ornithine aminotransferase (the extrapeptide), which was chemically synthesized and is composed of 34 amino acids. When the extrapeptide was incubated with isolated mitochondria in the presence of a rabbit reticulocyte lysate at 25 degrees C, it was imported into the mitochondrial matrix, and the import depended on the inner membrane potential, but not added ATP. The import of several precursors of mitochondrial proteins was competitively inhibited by the presence of excess extrapeptide in the reaction system, indicating that the extrapeptide and mitochondrial proteins were imported by the same machinery. Import of the extrapeptide was significantly stimulated by addition of a rabbit reticulocyte lysate, and a component of the lysate (the cytosolic factor) stimulating import of the extrapeptide was purified about 20,000 times by successive column chromatography on DEAE-cellulose and aminopentyl-Sepharose 4B. The binding of the extrapeptide to liposomes composed of egg lecithin and partially purified receptor of the precursor of mitochondrial protein (Ono, H., and Tuboi, S., (1985) Biochem. Int. 10, 351-357) required the cytosolic factor when the concentration of the peptide was less than 1.5 X 10(-8) M, suggesting that the physiological binding of the precursors of mitochondrial proteins to the receptor is dependent on the cytosolic factor. The extrapeptide and the cytosolic factor were shown to form a complex. From these results, the mechanism of binding of the extrapeptide to the receptor of the mitochondrial outer membrane is suggested to be as follows: the peptide (the precursor of mitochondrial protein) and the cytosolic factor form a complex, and then the complex is recognized by and bound to the receptor.  相似文献   

20.
Mitochondrial precursor proteins synthesized in rabbit reticulocyte lysate (RRL) are readily imported into mitochondria, whereas the same precursors synthesized in wheat germ extract (WGE) fail to be imported. We have investigated factors that render import incompetence from WGE. A precursor that does not require addition of extramitochondrial ATP for import, the F(A)d ATP synthase subunit, is imported from WGE. Import of chimeric constructs between precursors of the F(A)d protein and alternative oxidase (AOX) with switched presequences revealed that the mature domain of the F(A)d precursor defines the import competence in WGE as only the construct containing the presequence of AOX and mature portion of F(A)d (pAOX-mF(A)d) could be imported. Import competence of F(A)d and pAOX-mF(A)d correlated with solubility of these precursors in WGE, however, solubilization of import-incompetent precursors with urea did not restore import competence. Addition of RRL to WGE-synthesized precursors did not stimulate import but addition of WGE to the RRL-synthesized precursors or to the over-expressed mitochondrial precursor derived from the F1beta ATP synthase precursor inhibited import into mitochondria. The dual-targeted glutathione reductase precursor synthesized in WGE was imported into chloroplasts, but not into mitochondria. Antibodies against the 14-3-3 guidance complex characterized for chloroplast targeting were able to immunoprecipitate all of the precursors tested except the F(A)d ATP synthase precursor. Our results point to the conclusion that the import incompetence of WGE-synthesized mitochondrial precursors is not presequence dependent and is a result of interaction of WGE inhibitory factors with the mature portion of precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号