首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In chicken, adiposity is influenced by hepatic stearoyl-CoA desaturase (SCD) 1. This gene is up-regulated by low-fat high-carbohydrate diet and down-regulated by addition of polyunsaturated fatty acids (PUFA). In this study, we present evidence for an inhibition of chicken SCD1 expression by PUFA using reporter gene constructs in transient transfection assays. This inhibition does not involve the peroxisome proliferator-activated receptor pathway, in contrast with what has been observed in rodents. We were able to localise a PUFA as well as an insulin response element within the -372/+125 bp region of the promoter. Sequence analyses of this region allowed identification of several cis-regulatory elements: A sterol regulatory element (SRE) and a juxtaposed NF-Y element which have been shown to be involved in the regulation of mouse SCD genes by PUFA. In addition, we identified an overlapping Sp1/USF motif, which was described to play a role in insulin/glucose and PUFA regulation of fatty synthase, ATP-citrate-lyase, and leptin genes. These data provide the first characterisation of the chicken SCD1 promoter and putative cis-sequences involved in the regulation of this gene by PUFA and insulin.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Insulin receptor substrate-1 (IRS-1) plays an essential role in mediating the insulin signals that trigger mitogenesis, lipid synthesis, and uncoupling protein-1 gene expression in mouse brown adipocytes. Expression of IRS-3 is restricted mainly to white adipose tissue; expression of this IRS protein is virtually absent in brown adipocytes. We have tested the capacity of IRS-3 to mediate insulin actions in IRS-1-deficient brown adipocytes. Thus, we expressed exogenous IRS-3 in immortalized IRS-1-/- brown adipocytes at a level comparable with that of endogenous IRS-3 in white adipose tissue. Under these conditions, IRS-3 signaling in response to insulin was observed, as revealed by tyrosine phosphorylation of IRS-3, and the activation of phosphatidylinositol (PI) 3-kinase associated with this recombinant protein. However, although insulin promoted the association of Grb-2 with recombinant IRS-3 in IRS-1-/- cells, the exogenous expression of this IRS family member failed to activate p42/44 MAPK and mitogenesis in brown adipocytes lacking IRS-1. Downstream of PI 3-kinase, IRS-3 expression restored insulin-induced Akt phosphorylation, which is impaired by the lack of IRS-1 signaling. Whereas the generation of IRS-3 signals enhanced adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding protein (ADD-1/SREBP-1c) and fatty acid synthase mRNA and protein expression, activation of this pathway was unable to reconstitute CCAAT/enhancer-binding protein alpha and uncoupling protein-1 transactivation and gene expression in response to insulin. Similar results were obtained following insulin-like growth factor-I stimulation. In brown adipocytes expressing the IRS-3F4 mutant, the association of the p85alpha regulatory subunit via Src homology 2 binding was lost, but insulin nevertheless induced PI 3-kinase activity and Akt phosphorylation in a wortmannin-dependent manner. In contrast, activation of IRS-3F4 signaling failed to restore the induction of ADD-1/SREBP-1c and fatty acid synthase gene expression in IRS-1-deficient brown adipocytes. These studies demonstrate that recombinant IRS-3 may reconstitute some, but not all, of the signals required for insulin action in brown adipocytes. Thus, our data further implicate a unique role for IRS-1 in triggering insulin action in brown adipocytes.  相似文献   

15.
16.
17.
18.
To evaluate the genetic susceptibility to metabolic disorders induced by high fructose diet, we investigated the metabolic characteristics in 10 strains of inbred mice and found that they were separated into CBA and DBA groups according to the response to high fructose diet. The hepatic mRNA expression of the sterol regulatory element-binding protein-1 (SREBP-1) in CBA/JN was remarkably enhanced by high fructose diet but not in DBA/2N. Similar results were observed in primary hepatocytes after exposure to fructose. The nucleotide sequence at -468 bp from the putative starting point of the SREBP-1c gene was adenine in the DBA group while it was guanine in the CBA group. In hepatocytes from CBA/JN, the activity of CBA-SREBP-1c promoter was significantly increased by 2.4- and 2.2-fold, in response to 30 mm fructose or 10 nm insulin, respectively, whereas the activity of DBA-SREBP-1c promoter responded to insulin but not to fructose. In hepatocytes from DBA/2N, both types of SREBP-1c promoter activities in response to insulin were attenuated. Furthermore, electrophoretic mobility shift assay revealed an unidentified nuclear protein bound to the oligonucleotides made from the region between -453 to -480 bp of the SREBP-1c promoter of CBA/JN but not to the probe from DBA/2N. Thus, in DBA/2N, the reduced mRNA expression of SREBP-1 after fructose refeeding appeared to associate with two independent mechanisms, 1). loss of binding of unidentified proteins to the region between -453 to -480 bp of the SREBP-1c promoter and 2). impaired insulin stimulation of SREBP-1c promoter activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号