首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13-induced, claudin-2-dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction.  相似文献   

2.
Interleukin (IL)-15 is able to regulate tight junction formation in intestinal epithelial cells. However, the mechanisms that regulate the intestinal barrier function in response to IL-15 and the involved subunits of the IL-15 ligand-receptor system are unknown. We determined the IL-2Rbeta subunit and IL-15-dependent regulation of tight junction-associated proteins in the human intestinal epithelial cell line T-84. The IL-2Rbeta subunit was expressed and induced signal transduction in caveolin enriched rafts in intestinal epithelial cells. IL-15-mediated tightening of intestinal epithelial monolayers correlated with the enhanced recruitment of tight junction proteins into Triton X-100-insoluble protein fractions. IL-15-mediated up-regulation of ZO-1 and ZO-2 expression was independent of the IL-2Rbeta subunit, whereas the phosphorylation of occludin and enhanced membrane association of claudin-1 and claudin-2 by IL-15 required the presence of the IL-2Rbeta subunit. Recruitment of claudins and hyperphosphorylated occludin into tight junctions resulted in a more marked induction of tight junction formation in intestinal epithelial cells than the up-regulation of ZO-1 and ZO-2 by itself. The regulation of the intestinal epithelial barrier function by IL-15 involves IL-2Rbeta-dependent and -independent signaling pathways leading to the recruitment of claudins, hyperphosphorylated occludin, ZO-1, and ZO-2 into the tight junctional protein complex.  相似文献   

3.
ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.  相似文献   

4.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

5.
6.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

7.
In peripheral nerves, groups of Schwann cell-axon units are isolated from the adjacent tissues by the perineurium, which creates a diffusion barrier responsible for the maintenance of endoneurial homeostasis. The perineurium is formed by concentric layers of overlapping, polygonal perineurial cells that form tight junctions at their interdigitating cell borders. In this study, employing indirect immunofluorescence and immunoelectron microscopy, we demonstrate that claudin-1 and -3, ZO-1, and occludin, but not claudin-2, -4, and -5, are expressed in the perineurium of adult human peripheral nerve. We also describe the expression of occludin, ZO-1, claudin-1, -3, and -5 in the developing human perineurium, showing that the expressions of claudin-1 and -3, ZO-1, and occludin follow similar spatial developmental expression patterns but follow different timetables in achieving their respective adult distributions. Specifically, claudin-1 is already largely restricted to perineurium-derived structures at 11 fetal weeks, whereas claudin-3 and occludin are weakly expressed in the perineurial structures at this age and acquire a well-defined perineurial distribution only between 22 and 35 fetal weeks. ZO-1 appears to acquire its mature profile even later during the third trimester. The results of the present and previous studies show that the perineurial diffusion barrier matures relatively late during human peripheral nerve development.  相似文献   

8.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

9.
In well polarized epithelial cells, closely related ZO-1 and ZO-2 are thought to function as scaffold proteins at tight junctions (TJs). In epithelial cells at the initial phase of polarization, these proteins are recruited to cadherin-based spotlike adherens junctions (AJs). As a first step to clarify the function of ZO-1, we successfully generated mouse epithelial cell clones lacking ZO-1 expression (ZO-1-/- cells) by homologous recombination. Unexpectedly, in confluent cultures, ZO-1-/- cells were highly polarized with well organized AJs/TJs, which were indistinguishable from those in ZO-1+/+ cells by electron microscopy. In good agreement, by immunofluorescence microscopy, most TJ proteins including claudins and occludin appeared to be normally concentrated at TJs of ZO-1-/- cells with the exception that a ZO-1 deficiency significantly up- or down-regulated the recruitment of ZO-2 and cingulin, another TJ scaffold protein, respectively, to TJs. When the polarization of ZO-1-/- cells was initiated by a Ca2+ switch, the initial AJ formation did not appear to be affected; however, the subsequent TJ formation (recruitment of claudins/occludin to junctions and barrier establishment) was markedly retarded. This retardation as well as the disappearance of cingulin were rescued completely by exogenous ZO-1 but not by ZO-2 expression. Quantitative evaluation of ZO-1/ZO-2 expression levels led to the conclusion that ZO-1 and ZO-2 would function redundantly to some extent in junction formation/epithelial polarization but that they are not functionally identical. Finally, we discussed advantageous aspects of the gene knock-out system with cultured epithelial cells in epithelial cell biology.  相似文献   

10.
Oxidants such as monochloramine (NH(2)Cl) decrease epithelial barrier function by disrupting perijunctional actin and possibly affecting the distribution of tight junctional proteins. These effects can, in theory, disturb cell polarization and affect critical membrane proteins by compromising molecular fence function of the tight junctions. To examine these possibilities, we investigated the actions of NH(2)Cl on the distribution, function, and integrity of barrier-associated membrane, cytoskeletal, and adaptor proteins in human colonic Caco-2 epithelial monolayers. NH(2)Cl causes a time-dependent decrease in both detergent-insoluble and -soluble zonula occludens (ZO)-1 abundance, more rapidly in the former. Decreases in occludin levels in the detergent-insoluble fraction were observed soon after the fall of ZO-1 levels. The actin depolymerizer cytochalasin D resulted in a decreased transepithelial resistance (TER) more quickly than NH(2)Cl but caused a more modest and slower reduction in ZO-1 levels and in occludin redistribution. No changes in the cellular distribution of claudin-1, claudin-5, or ZO-2 were observed after NH(2)Cl. However, in subsequent studies, the immunofluorescent cellular staining pattern of all these proteins was altered by NH(2)Cl. The actin-stabilizing agent phalloidin did not prevent NH(2)Cl-induced decreases in TER or increases of apical to basolateral flux of the paracellular permeability marker mannitol. However, it partially blocked changes in ZO-1 and occludin distribution. Tight junctional fence function was also compromised by NH(2)Cl, observed as a redistribution of the alpha-subunit of basolateral Na(+)-K(+)-ATPase to the apical membrane, an effect not found with the apical membrane protein Na(+)/H(+) exchanger isoform 3. In conclusion, oxidants not only disrupt perijunctional actin but also cause redistribution of tight junctional proteins, resulting in compromised intestinal epithelial barrier and fence function. These effects are likely to contribute to the development of malabsorption and dysfunction associated with mucosal inflammation of the digestive tract.  相似文献   

11.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

12.
The effects of the sensory neurotransmitter substance P on the expression of tight junction proteins and on barrier function in human corneal epithelial cells were investigated. The expression of ZO-1, but not that of occludin or claudin-1, was increased by substance P in a concentration- and time-dependent manner. This effect was inhibited by the NK-1 receptor antagonist GR82334 and by KN62, an inhibitor of Ca2+- and calmodulin-dependent protein kinase II. Substance P also increased the transepithelial electrical resistance of a cell monolayer in a manner sensitive to GR82334. Substance P may therefore play a role in maintenance of tight junctions in the corneal epithelium.  相似文献   

13.
Constitutive activation of Ras or Ras-mediated signaling pathways is one of the initial steps during tumorigenesis that promotes neoplastic transformation. Recently it was reported that in Ha-Ras overexpressing MDCK cells the tight junction proteins claudin-1, occludin and ZO-1 were absent at cell-cell contact sites but present in the cytoplasm. Inhibition of MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the tight junction barrier function in MDCK cells. In order to evaluate the relevance of the MEK1 pathway in tight junction regulation in breast cancer cells, we investigated the effect ofMEK1 inhibition on expression of claudin-1, occludin and ZO-1 in natively claudin-1 expressing T47-D cells (low Ras activity), claudin-1 negative MCF-7 cells (elevated Ras activity) as well as two retroviral claudin-1 transduced MCF-7 daughter cell lines with prominent membrane and cytoplasmic claudin-1 dominant homing, respectively. Although we effectively blocked phosphorylation of MAPKs ERK-1 and ERK-2 using the selective MEK1 inhibitor PD98059, no quantitative changes of mRNA or protein levels of claudin-1, occludin and ZO-1 could be detected in all cell lines investigated. Furthermore, immnfluorescence analysis of claudin-1 revealed that inhibition of the MAPK pathway did not alter th e subcellular cytoplasmic distribution of claudin-1 to be more membrane specific. Finally, the diffusion barrier properties of tight junctions as analyzed by transepithelial resistance (TER) or paracellular flux analysis of 3 and 40 kDa dextran of tight junctions were not altered in the claudin-1 positive T47-D and the MCF-7 cell lines. Our findings indicate that the proposed involvement of the Ras-MEK-ERK pathway is likely not involved in the dysregulated tight junction formation in breast tumor cells and indicates that elevated activity of Ras might not be of general importance for the disruption of tight junction structures in breast tumors.  相似文献   

14.
Osteoblasts express claudins and tight junction-associated proteins   总被引:3,自引:1,他引:2  
Osteoblasts were previously reported to form tight junctions, which may play an important role in the regulation of ion transport across the epithelial-like bone membrane. However, the evidence for the presence of tight junction-associated proteins in osteoblasts is lacking. We therefore studied the expression of tight junction-associated genes in primary rat osteoblasts and bone tissues. Quantitative real-time PCR showed that osteoblasts expressed ZO-1, -2, -3, cingulin, occludin, claudin-1 to -12, -14 to -20, -22 and -23. By using western blot analyses of selected claudins, expression of claudin-5, -11, -14 and -15, but not claudin-3, were identified in osteoblasts. A confocal immunofluorescent study in undecalcified tibial sections confirmed that claudin-16 was localized on the trabecular surface, normally covered by osteoblasts and bone-lining cells. In addition, immunohistochemical studies in decalcified tibial sections demonstrated the expression of claudin-5, -11, -14, -15 and -16 in bone-lining cells (inactive osteoblasts). Primary osteoblasts cultured in the Snapwell for 19-26 days were found to form a monolayer with measurable transepithelial resistance of approximately 110-180 Omegacm(2), confirming the presence of barrier functions of the tight junction. It was concluded that osteoblasts expressed several tight junction-associated proteins, which possibly regulated ion transport across the bone membrane.  相似文献   

15.
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17β-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17β-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17β-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.  相似文献   

16.
The construction of the hepatocyte tight junction is one of the most important events during liver regeneration leading to the reorganization of the bile canaliculi and the repolarization of hepatocytes after cell division. To understand this event at the molecular level, we examined the expression of tight junction proteins by Western blot analysis and their cellular localization by immunofluorescence microscopy in regenerating rat liver after two-thirds hepatectomy. The levels of tight junction components such as claudin-3, ZO-1 and atypical protein kinase C (PKC)-specific interacting protein (ASIP) increased two- to three-fold over control levels in coordination with a peak 2-3 days after partial hepatectomy, whereas occludin levels remained unchanged. The bile canaliculi outlined by tight junction components and actin filaments reveal significant morphological changes from 2-3 days after partial hepatectomy. During this period, claudin-3/ZO-1 and ASIP/ZO-1 were nearly co-localized, whereas occludin was locally reduced or almost absent on the bile canaliculi outlined by ZO-1 staining. The uncoupled localization of F-actin and tight junction components was often observed. The function of hepatocytes, as revealed by the serum bile acids level, was distorted temporally at an early stage of regeneration but mostly restored 3 days after partial hepatectomy. These observations suggest that the de novo construction of tight junctions proceeds mainly 2-3 days after partial hepatectomy in parallel with the cell polarization required for hepatocyte function. However, the complete normalization of the composition of the tight junction components, such as occludin and the association with F-actin, requires additional time, which may support the regeneration of fully polarized normal hepatocytes.  相似文献   

17.
Tight junctions (TJs) are the most apical cell-cell junctions, and claudins, the recently identified TJ proteins, are critical for maintaining cell-cell adhesion in epithelial cell sheets. Based on their in vivo distribution and the results of overexpression studies, certain claudins, including claudin-1 and -4, are postulated to increase, whereas other claudins, especially claudin-2, are postulated to decrease the overall transcellular resistance. The overall ratio among claudins expressed in a cell/tissue has been hypothesized to define the complexity of TJs. Disruption of the TJs contributes to various human diseases, and a correlation between reduction of TJ function and tumor dedifferentiation has been postulated. The epidermal growth factor (EGF) receptor (EGFR) is overexpressed in a wide spectrum of epithelial cancers, and its expression correlates with a more metastatic cancer phenotype. However, normal functioning of EGFR is essential for normal epithelial cell proliferation and differentiation. The role of EGFR-dependent signaling in the development and maintenance of epithelial TJ integrity has not been studied in detail. This study demonstrates that, in polarized Madin-Darby canine kidney II cells, EGF-induced EGFR activation significantly inhibited claudin-2 expression while simultaneously inducing cellular redistribution and increased expression of claudin-1, -3, and -4. Accompanying these EGF-induced changes in claudin expression was a 3-fold increase in transepithelial resistance, a functional measure of TJs. In contrast, there were no alterations in protein expression and/or intracellular localization of other TJ-related proteins (ZO-1 and occludin) or adherens junction-associated proteins (E-cadherin and beta-catenin), suggesting that EGF regulates TJ function through selective and differential regulation of claudins.  相似文献   

18.
During the estrous cycle, the endometrium epithelium experiences marked cellular structural changes. For fertilization to proceed, maintenance of an adequate uterine environment by ovarian hormones is essential. Epithelial cells lining the uterine lumen are associated with each other by tight junctions (TJs), which regulate the passage of ions and molecules through the paracellular pathway. The aim of the present study was to assess by confocal immunofluorescence the distribution pattern of the TJ proteins ZO-1, occludin, and claudins 1–7 in the rat uterus during the estrous cycle. Our results reveal that on proestrus, the day when mating takes place, ZO-1, occludin, and claudins 1 and 5 are located in the TJs, while claudins 3 and 7 display a basolateral distribution. In contrast, on metestrus day, when no sexual mating occurs and the uterine lumen is devoid of secretions, none of these proteins were detected in the TJ region, and only a diffuse cytosolic staining was observed for some of the proteins. On estrus and diestrus days, an intermediate situation was encountered, since ZO-1 localized in the TJs, whereas occludin was no longer detectable in the TJs. The distribution of claudins during these stages varied from the lowermost portion of the basolateral membrane to its apex. In conclusion, the results show that the protein composition of TJs present in the luminal epithelial cells of the uterus changes during the different days of the estrous cycle, and suggest that the expression of TJ proteins participates in providing an adequate environment for a successful fertilization.This work was supported by grants PAPIIT (IN210902, IX228504) and PAIP (6190-08) from the National Autonomous University of Mexico (UNAM), and by grants G34511-M and 37846-N from the Mexican National Council on Science and Technology (CONACYT).  相似文献   

19.
Defining how the molecular constituents of the tight junction interact is a prerequisite to understanding tight junction physiology. We utilized in vitro binding assays with purified recombinant proteins and immunoprecipitation analyses to define interactions between ZO-1, ZO-2, ZO-3, occludin, and the actin cytoskeleton. Actin cosedimentation studies showed that ZO-2, ZO-3, and occludin all interact directly with F-actin in vitro, indicating that actin is engaged in multiple interactions at the tight junction. Low speed sedimentation analyses demonstrated that neither ZO-2, ZO-3, nor occludin act as F-actin cross-linking proteins, and further evidence indicates that these proteins do not bind to actin filament ends. The binding interactions of ZO-2, ZO-3, and occludin were corroborated in vivo by immunofluorescence colocalization experiments which showed that all three proteins colocalized with actin aggregates at cell borders in cytochalasin D-treated Madin-Darby canine kidney cells. Exploration of other tight junction protein interactions demonstrated that ZO-2 binds directly to both ZO-1 and occludin. Contrary to previous beliefs, our immunoprecipitation results indicate that ZO-1, ZO-2, and ZO-3 exist in situ primarily as independent ZO-1.ZO-2 and ZO-1.ZO-3 complexes rather than a trimeric ZO-1.ZO-2.ZO-3 grouping. These studies elucidate direct binding interactions among tight junction-associated proteins, giving insight into their organization as a multimolecular structure.  相似文献   

20.
Tight junctions of hepatocytes form the intercellular barrier between the blood circulation and bile flow. We focused on early stages of common bile duct ligation to observe changes in tight junctions without the irreversible changes seen after lengthy ligation. Common bile ducts of 12-week-old male rats were ligated for 6 h because, at this time point, no histological changes were observed. Serum bilirubin and bile acid levels began to increase 3 h after ligation and were restored to the control level immediately after surgical removal of the ligation. To examine the barrier of hapatocytes, horseradish peroxidase was injected via the femoral vein, and bile was collected for the first 10 min. A four-fold elevation of the secretion and concentration was observed in the bile of ligated rats compared with that of control animals. We next examined lanthanum permeability by perfusion fixation of the liver. At 6 h after ligation, both dilation of the bile canaliculi and partial loss of microvilli were commonly observed. There were dense deposits of lanthanum in almost all bile canaliculi of ligated rats. In control animals, neither dilation of the bile canaliculi nor loss of microvilli was detected, and only 44% of bile canaliculi exhibited deposits. An apparent increase of occludin mRNA expression was detected in livers after 6 h ligation, whereas the expression of claudin-1, -2, and -3 was not influenced by ligation. These results indicate that regulation of occludin gene expression is different from that of claudin-1, -2, and -3. The early phase of bile stasis employed in this study is thought to be an indispensable approach for understanding the precise regulation of tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号