首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.  相似文献   

2.
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors.  相似文献   

3.
CaM kinase-Gr is a multifunctional Ca2+/calmodulin-dependent protein kinase which is enriched in neurons and T lymphocytes. The kinase is absent from primary human B lymphocytes but is expressed in Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines, suggesting that expression of the kinase can be upregulated by an EBV gene product(s). We investigated the basis of CaM kinase-Gr expression in EBV-transformed cells and the mechanisms that regulate its activity therein by using an EBV-negative Burkitt lymphoma cell line, BJAB, and BJAB cells converted to expression of individual EBV proteins by single-gene transfer. CaM kinase-Gr expression was upregulated in BJAB cells by EBV latent-infection membrane protein 1 (LMP1) but not by LMP2A or by nuclear proteins EBNA1, EBNA2, EBNA3A, and EBNA3C. In LMP1-converted BJAB cells, the kinase was functional and was dramatically activated upon cross-linking of surface immunoglobulin M. Overlapping cDNA clones that encode human CaM kinase-Gr were sequenced, revealing 81% amino acid identity between the rat and human proteins. Transfection of BJAB cells with an expression construct for the human enzyme resulted in a functional kinase which was shown by epitope tagging to localize primarily to cytoplasmic and perinuclear structures. Induction of CaM kinase-Gr expression by LMP1 provides the first example of a Ca2+/calmodulin-dependent protein kinase upregulated by a viral protein. In view of the key role played by LMP1 in B-lymphocyte immortalization by EBV, these findings implicate CaM kinase-Gr as a potential mediator of B-lymphocyte growth transformation.  相似文献   

4.
5.
Epstein-Barr virus (EBV) is a ubiquitous virus with infections commonly resulting in a latency carrier state. Although the exact role of EBV in cancer pathogenesis remains not entirely clear, it is highly probable that it causes several lymphoid and epithelial malignancies, such as Hodgkin’s lymphoma, NK-T cell lymphoma, Burkitt’s lymphoma, and nasopharyngeal carcinoma. EBV-associated malignancies are associated with a latent form of infection, and several of these EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins. Studies have shown that EBV displays distinct patterns of viral latent gene expression in these lymphoid and epithelial tumors. The constant expression of latent membrane protein 2A (LMP2A) at the RNA level in both primary and metastatic tumors suggests that this protein might be a driving factor in the tumorigenesis of EBV-associated malignancies. LMP2A may cooperate with the aberrant host genome, and thereby contribute to malignant transformation by intervening in signaling pathways at multiple points, especially in the cell cycle and apoptotic pathway. This review summarizes the role of EBV-encoded LMP2A in EBV-associated viral latency and cancers. We will focus our discussions on the molecular interactions of each of the conserved motifs in LMP2A, and their involvement in various signaling pathways, namely the B-cell receptor blockade mechanism, the ubiquitin-mediated (Notch and Wnt) pathways, and the MAPK, PI3-K/Akt, NK-κB and STAT pathways, which can provide us with important insights into the roles of LMP2A in the EBV-associated latency state and various malignancies.  相似文献   

6.
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.  相似文献   

7.
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is an oncogenic protein which has previously been shown to engage the NF-kappaB, stress-activated MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and extracellular-regulated kinase (ERK)-MAPK pathways. In this study, we demonstrate that LMP1 activates ERK-MAPK in epithelial cells via the canonical Raf-MEK-ERK-MAPK pathway but in a Ras-independent manner. In agreement with the results of a previous study (B. A. Mainou, D. N. Everly, Jr., and N. Raab-Traub, J. Virol. 81:9680-9692, 2007), we show that the ability of LMP1 to activate ERK-MAPK mapped to its CTAR1 domain, the TRAF binding domain previously implicated in PI 3-kinase activation. A role for ERK-MAPK in LMP1-induced epithelial cell motility was identified, as LMP1-expressing cells displayed increased rates of haptotactic migration compared to those of LMP1-negative cells. These data implicate the ERK-MAPK pathway in LMP1-induced effects associated with transformation, suggesting that this pathway may contribute to the oncogenicity of LMP1 through its ability to promote cell motility and to enhance the invasive properties of epithelial cells.  相似文献   

8.
The Epstein-Barr virus LMP2A protein was expressed in a human keratinocyte cell line, HaCaT, and effects on epithelial cell growth were detected in organotypic raft cultures and in vivo in nude mice. Raft cultures derived from LMP2A-expressing cells were hyperproliferative, and epithelial differentiation was inhibited. The LMP2A-expressing HaCaT cells were able to grow anchorage independently and formed colonies in soft agar. HaCaT cells expressing LMP2A were highly tumorigenic and formed aggressive tumors in nude mice. The LMP2A tumors were poorly differentiated and highly proliferative, in contrast to occasional tumors that arose from parental HaCaT cells and vector control cells, which grew slowly and remained highly differentiated. Animals injected with LMP2A-expressing cells developed frequent metastases, which predominantly involved lymphoid organs. Involucrin, a marker of epithelial differentiation, and E-cadherin, involved in the maintenance of intercellular contact, were downregulated in LMP2A tumors. Whereas activation of the mitogen-activated protein kinase pathway was not observed, phosphatidylinositol-3-kinase (PI3-kinase)-dependent activation of the serine-threonine kinase Akt was detected in LMP2A-expressing cells and LMP2A tumors. Inhibition of this pathway blocked growth in soft agar. These data indicate that LMP2A greatly affects cell growth and differentiation pathways in epithelial cells, in part through activation of the PI3-kinase-Akt pathway.  相似文献   

9.
The Epstein-Barr virus (EBV) proteins latent membrane proteins 1 and 2 (LMP1 and LMP2) are frequently expressed in EBV-associated lymphoid and epithelial cancers and have complex effects on cell signaling and growth. The effects of these proteins on epithelial cell growth were assessed in vivo using transgenic mice driven by the keratin 14 promoter (K14). The development of papillomas and carcinomas was determined in the tumor initiator and promoter model using dimethyl benzanthracene (DMBA), followed by repeated treatments of 12-O-tetradecanoyl phorbol 13-acetate (TPA). In these assays, LMP1 functioned as a weak tumor promoter and increased papilloma formation. In contrast, mice expressing LMP2A did not induce or promote papilloma formation. Transgenic LMP1 mice had slightly increased development of squamous cell carcinoma; however, the development of carcinoma was significantly increased in the doubly transgenic mice expressing both LMP1 and LMP2A. DMBA treatment induces an activating mutation in the Harvey-ras (H-ras(61)) oncogene, and this mutation was identified in most papillomas and carcinomas although several papillomas and carcinomas in K14-LMP1 and K14-LMP1/LMP2A mice lacked the mutation. Analysis of signaling pathways that are known to be activated by LMP1 and/or LMP2 indicated that all genotypes had high levels of activated extracellular signal-regulated kinase (ERK) and Stat3 in carcinomas with significantly higher activation in the doubly transgenic carcinomas. These findings suggest that, in combination, LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of the proteins on activation of multiple signaling pathways. This study is the first to characterize the effects of LMP2 on tumor initiation and promotion and to identify an effect of the combined expression of LMP1 and LMP2 on the increase of carcinoma development.  相似文献   

10.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

11.
Latent membrane protein 2A (LMP2A) is one of only two viral proteins expressed during latent Epstein-Barr virus (EBV) infections in human peripheral B cells. LMP2A blocks B-cell receptor (BCR) signal transduction in vitro by modulation of the Syk and Lyn protein tyrosine kinases. Five genetically unique LMP2A transgenic mouse lines (EmuLMP2A) with B-cell lineage expression of LMP2A were generated in this study to analyze the importance of LMP2A expression in vivo. These animals can be grouped into EmuLMP2A(BCR+) (TgB, Tg6, and TgC) and EmuLMP2A(BCR-) (Tg7 and TgE) lines based on B-cell phenotype. LMP2A expression in bone marrow cells of EmuLMP2A(BCR-) lines was associated with a bypass of normal B-lymphocyte developmental checkpoints inasmuch as immunoglobulin light-chain gene rearrangement occurred in the absence of complete immunoglobulin heavy-chain gene rearrangement. The resulting BCR-negative B cells were able to exit the bone marrow and colonize peripheral lymphoid organs. LMP2A expression in EmuLMP2A(BCR+) lines was not associated with altered B-cell development in a genetically wild-type background. When crossed into a recombinase activating null (RAG(-/-)) genetic background, LMP2A expression in either RAG(-/-) EmuLMP2A(BCR+) or RAG(-/-) EmuLMP2A(BCR-) animals was able to provide a survival signal to BCR-negative splenic B cells. Additionally, bone marrow cells from all EmuLMP2A animals were able to proliferate in response to interleukin-7-dependent developmental signals in vitro. These studies illustrate that LMP2A can provide a survival signal to BCR-negative B cells in two different groups of EmuLMP2A transgenic mice.  相似文献   

12.
Epstein-Barr virus (EBV) is associated with various malignancies, including epithelial cancers. In this study, we analyzed the effect of EBV infection on epithelial cells by using EBV-converted epithelial cells. In EBV-positive cells, the extracellular signal-regulated kinase (ERK) pathway is constitutively activated. Inhibition of ERK activity leads to reduced anoikis resistance; therefore, EBV-positive cells are more resistant to anoikis, a type of apoptosis induced by cell detachment, than are EBV-negative cells. Among the viral genes expressed in EBV-positive cells, the latent membrane protein 2A (LMP2A) is responsible for induction of ERK-mediated anoikis resistance, although the expression level of LMP2A is much lower in EBV-positive cells than in EBV-transformed B cells. Further analysis demonstrated that LMP2A downregulation of the proanoikis mediator Bim through proteasomal degradation is dependent on the immunoreceptor tyrosine-based activation motif (ITAM). These findings suggest that LMP2A-mediated ERK activation is involved in the generation of EBV-associated epithelial malignancies.  相似文献   

13.
Recent cDNA cloning and sequencing of two Epstein-Barr virus (EBV)-specific mRNAs from latently infected cultures revealed that these RNAs are encoded across the fused terminal repeats of the viral genome and that they are likely to encode two nearly identical proteins with the same transmembrane domains. The smaller predicted protein (LMP2B) lacks 119 amino-terminal amino acids found in the larger one (LMP2A). To test whether these proteins are expressed in latently infected lymphocytes, antibodies to the LMP2 proteins were derived by immunizing rabbits with TrpE-LMP2A fusion proteins. Affinity-purified LMP2-specific antibodies recognized 54- and 40-kilodalton proteins, corresponding to LMP2A and LMP2B, in immunoblots of rodent fibroblasts stably transfected with eucaryotic expression plasmids containing either the LMP2A or LMP2B cDNA. Similar-size proteins were also identified in immunoblots of latently infected lymphocytes. LMP2A localized to membranes in cellular fractionation studies. In immunofluorescent studies, LMP2 localized in the plasma membrane of EBV-infected lymphocytes, with the majority of reactivity confined to the region of the LMP1 patch. This reactivity was detected in almost all lymphoblastoid cells latently infected with EBV.  相似文献   

14.
Although spleen tyrosine kinase (Syk) is known to be important in hematopoietic cell development, the roles of Syk in epithelial cells have not been well studied. Limited data suggest that Syk plays alternate roles in carcinogenesis under different circumstances. In breast cancer, Syk has been suggested to be a tumor suppressor. In contrast, Syk is essential for murine mammary tumor virus-mediated transformation. However, the roles of Syk in tumor migration are still largely unknown. Nasopharyngeal carcinoma, an unusually highly metastatic tumor, expresses Epstein-Barr virus LMP2A (latent membrane protein 2A) in most clinical specimens. Previously, we demonstrated LMP2A triggers epithelial cell migration. LMP2A contains an immunoreceptor tyrosine-based activation motif, which is important for Syk kinase activation in B cells. In this study, we explored whether Syk is important for LMP2A-mediated epithelial cell migration. We demonstrate that LMP2A expression can activate endogenous Syk activity. The activation requires the tyrosine residues in LMP2A ITAM but not YEEA motif, which is important for Syk activation by Lyn in B cells. LMP2A interacts with Syk as demonstrated by coimmunoprecipitation and confocal microscopy. Furthermore, LMP2A-induced cell migration is inhibited by a Syk inhibitor and short interfering RNA. Tyrosines 74 and 85 in the LMP2A immunoreceptor tyrosine-based activation motif are essential for both Syk activation and LMP2A-mediated cell migration, indicating the involvement of Syk in LMP2A-triggered cell migration. The LMP2A-Syk pathway may provide suitable drug targets for treatment of nasopharyngeal carcinoma.  相似文献   

15.
16.
In Epstein-Barr virus-transformed B cells, known as lymphoblastoid cell lines (LCLs), LMP2A binds the tyrosine kinases Syk and Lyn, blocking B-cell receptor (BCR) signaling and viral lytic replication. SH2 domains in Syk mediate binding to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) in LMP2A. Mutation of the LMP2A ITAM in LCLs eliminates Syk binding and allows for full BCR signaling, thereby delineating the significance of the LMP2A-Syk interaction. In transgenic mice, LMP2A causes a developmental alteration characterized by a block in surface immunoglobulin rearrangement resulting in BCR-negative B cells. Normally B cells lacking cognate BCR are rapidly apoptosed; however, LMP2A transgenic B cells develop and survive without a BCR. When bred into the recombinase activating gene 1 null (RAG(-/-)) background, all LMP2A transgenic lines produce BCR-negative B cells that develop and survive in the periphery. These data indicate that LMP2A imparts developmental and survival signals to B cells in vivo. In this study, LMP2A ITAM mutant transgenic mice were generated to investigate whether the LMP2A ITAM is essential for the survival phenotype in vivo. LMP2A ITAM mutant B cells develop normally, although transgene expression is comparable to that in previously described nonmutated LMP2A transgenic B cells. Additionally, LMP2A ITAM mutant mice are unable to promote B-cell development or survival when bred into the RAG(-/-) background or when grown in methylcellulose containing interleukin-7. These data demonstrate that the LMP2A ITAM is required for LMP2A-mediated developmental and survival signals in vivo.  相似文献   

17.

Background and Objectives

Epstein-Barr Virus (EBV) Latent Membrane Protein 1 (LMP1) is linked to a variety of malignancies including Hodgkin''s disease, lymphomas, nasopharyngeal and gastric carcinoma. LMP1 exerts its transforming or oncogenic activity mainly through the recruitment of intracellular adapters via LMP1 C-terminal Transformation Effector Sites (TES) 1 and 2. However, LMP1 is also reported to elicit significant cytotoxic effects in some other cell types. This cytotoxic effect is quite intriguing for an oncogenic protein, and it is unclear whether both functional aspects of the protein are related or mutually exclusive.

Methodology and Principal Findings

Using different ectopic expression systems in both Madin-Darby canine kidney (MDCK) epithelial cells and human embryonic kidney HEK-293 cells, we observe that LMP1 ectopic expression massively induces cell death. Furthermore, we show that LMP1-induced cytotoxicity mainly implies LMP1 C-terminal transformation effector sites and TRADD recruitment. However, stable expression of LMP1 in the same cells, is found to be associated with an increase of cell survival and an acquisition of epithelial mesenchymal transition phenotype as evidenced by morphological modifications, increased cell mobility, increased expression of MMP9 and decreased expression of E-cadherin. Our results demonstrate for the first time that the cytotoxic and oncogenic effects of LMP1 are not mutually exclusive but may operate sequentially. We suggest that in a total cell population, cells resistant to LMP1-induced cytotoxicity are those that could take advantage of LMP1 oncogenic activity by integrating LMP1 signaling into the pre-existent signaling network. Our findings thus reconcile the apparent opposite apoptotic and oncogenic effects described for LMP1 and might reflect what actually happens on LMP1-induced cell transformation after EBV infection in patients.  相似文献   

18.
19.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed on the membranes of B lymphocytes and blocks B-cell receptor (BCR) signaling in EBV-transformed B lymphocytes in vitro. The phosphotyrosine motifs at positions 74 or 85 and 112 within the LMP2A amino-terminal domain are essential for the LMP2A-mediated block of B-cell signal transduction. In vivo studies indicate that LMP2A allows B-cell survival in the absence of normal BCR signals. A possible role for Akt in the LMP2A-mediated B-cell survival was investigated. The protein kinase Akt is a crucial regulator of cell survival and is activated within B lymphocytes upon BCR cross-linking. LMP2A expression resulted in the constitutive phosphorylation of Akt, and this LMP2A effect is dependent on phosphatidylinositol 3-kinase activity. In addition, recruitment of Syk and Lyn protein tyrosine kinases (PTKs) to tyrosines 74 or 85 and 112, respectively, are critical for LMP2A-mediated Akt phosphorylation. However, the ability of LMP2A to mediate a survival phenotype downstream of Akt could not be detected in EBV-negative Akata cells. This would indicate that LMP2A is not responsible for EBV-dependent Burkitt's lymphoma cell survival.  相似文献   

20.
Latent membrane protein 2A (LMP2A) is expressed in latent Epstein-Barr virus (EBV) infection. We have demonstrated that Nedd4 family ubiquitin-protein ligases (E3s), AIP4, WWP2/AIP2, and Nedd4, bind specifically to two PY motifs present within the LMP2A amino-terminal domain. In this study, LMP2A PY motif mutant viruses were constructed to investigate the role of the LMP2A PY motifs. AIP4 was found to specifically associate with the LMP2A PY motifs in EBV-transformed lymphoblastoid cell lines (LCLs), extending our original observation to EBV-infected cells. Mutation of both of the LMP2A PY motifs resulted in an absence of binding of AIP4 to LMP2A, which resulted in an increase in the expression of Lyn and the constitutive hyperphosphorylation of LMP2A and an unknown 120-kDa protein. In addition, there was a modest increase in the constitutive phosphorylation of Syk and an unidentified 60-kDa protein. These results indicate that the PY motifs contained within LMP2A are important in regulating phosphorylation in EBV-infected LCLs, likely through the regulation of Lyn activity by specifically targeting the degradation of Lyn by ubiquination by Nedd4 family E3s. Despite differences between PY motif mutant LCLs and wild-type LCLs, the PY motif mutants still exhibited a block in B-cell receptor (BCR) signal transduction as measured by the induction of tyrosine phosphorylation and BZLF1 expression following BCR activation. EBV-transformed LCLs with mutations in the PY motifs were not different from wild-type LCLs in serum-dependent cell growth. Protein stability of LMP1, which colocalizes with LMP2A, was not affected by the LMP2A-associated E3s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号