首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metaxin is an outer membrane protein of mammalian mitochondria which is suggested to be involved in protein import into the organelle. RNA blot analysis showed that distribution of metaxin mRNA in human tissues differs from that of mRNA for the translocase component Tom20. Effect of overexpression of human metaxin on mitochondrial preprotein import and processing in COS-7 cells was studied. Overexpression of metaxin resulted in impaired mitochondrial import of natural and chimeric preproteins and in their accumulation. We previously reported that overexpression of Tom20 in cultured cells causes inhibition of import of mitochondrial preprotein. Coexpression of metaxin with Tom20 had no further effect on the preprotein import. Overexpression of the cytosolic domain of metaxin also caused inhibition of preprotein import, although less strongly than the full-length metaxin. In blue native PAGE, Tom40, Tom22, and a portion of Tom20 migrated as a complex of approximately 400 kDa, and the other portion of Tom20 migrated in smaller forms of approximately 100 and approximately 40 kDa. On the other hand, metaxin migrated at a position of approximately 50 kDa. These results confirm earlier in vitro results that metaxin participates in preprotein import into mammalian mitochondria, and indicates that it does not associate with the Tom complex.  相似文献   

2.
Conserved roles of Sam50 and metaxins in VDAC biogenesis   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.  相似文献   

3.
Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-XL overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Metmut) and Bcl-XL-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaDTM/C) or Bcl-XL in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-XL overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-XL appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-XL may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-XL overespression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.  相似文献   

4.
The translocase of the inner membrane 17 (AtTIM17-2) protein from Arabidopsis has been shown to link the outer and inner mitochondrial membranes. This was demonstrated by several approaches: (i) In vitro organelle import assays indicated the imported AtTIM17-2 protein remained protease accessible in the outer membrane when inserted into the inner membrane. (ii) N-terminal and C-terminal tagging indicated that it was the C-terminal region that was located in the outer membrane. (iii) Antibodies raised to the C-terminal 100 amino acids recognize a 31-kDa protein from purified mitochondria, but cross-reactivity was abolished when mitochondria were protease-treated to remove outer membrane-exposed proteins. Antibodies to AtTIM17-2 inhibited import of proteins via the general import pathway into outer membrane-ruptured mitochondria, but did not inhibit protein import via the carrier import pathway. Together these results indicate that the C-terminal region of AtTIM17-2 is exposed on the outer surface of the outer membrane, and the C-terminal region is essential for protein import into mitochondria.  相似文献   

5.
The mitochondrial oxidative phosphorylation (OXPHOS) proteins are encoded by both nuclear and mitochondrial DNA. The nuclear-encoded OXPHOS mRNAs have specific subcellular localizations, but little is known about which localize near mitochondria. Here, we compared mRNAs in mitochondria-bound polysome fractions with those in cytosolic, free polysome fractions. mRNAs encoding hydrophobic OXPHOS proteins, which insert into the inner membrane, were localized near mitochondria. Conversely, OXPHOS gene which mRNAs were predominantly localized in cytosol had less than one transmembrane domain. The RNA-binding protein Y-box binding protein-1 is localized at the mitochondrial outer membrane and bound to the OXPHOS mRNAs. Our findings offer new insight into mitochondrial co-translational import in human cells.  相似文献   

6.
The hepatitis C virus (HCV) core protein represents the first 191 amino acids of the viral precursor polyprotein and is cotranslationally inserted into the membrane of the endoplasmic reticulum (ER). Processing at position 179 by a recently identified intramembrane signal peptide peptidase leads to the generation and potential cytosolic release of a 179-amino-acid matured form of the core protein. Using confocal microscopy, we observed that a fraction of the mature core protein colocalized with mitochondrial markers in core-expressing HeLa cells and in Huh-7 cells containing the full-length HCV replicon. Subcellular fractionation confirmed this observation and showed that the core protein associates with purified mitochondrial fractions devoid of ER contaminants. The core protein also fractionated with mitochondrion-associated membranes, a site of physical contact between the ER and mitochondria. Using immunoelectron microscopy and in vitro mitochondrial import assays, we showed that the core protein is located on the mitochondrial outer membrane. A stretch of 10 amino acids within the hydrophobic C terminus of the processed core protein conferred mitochondrial localization when it was fused to green fluorescent protein. The location of the core protein in the outer mitochondrial membrane suggests that it could modulate apoptosis or lipid transfer, both of which are associated with this subcellular compartment, during HCV infection.  相似文献   

7.
The translocase of the outer mitochondrial membrane (TOM) complex is the general entry site into the organelle for newly synthesized proteins. Despite its central role in the biogenesis of mitochondria, the assembly process of this complex is not completely understood. Mim1 (mitochondrial import protein 1) is a mitochondrial outer membrane protein with an undefined role in the assembly of the TOM complex. The protein is composed of an N-terminal cytosolic domain, a central putative transmembrane segment (TMS) and a C-terminal domain facing the intermembrane space. Here we show that Mim1 is required for the integration of the import receptor Tom20 into the outer membrane. We further investigated what the structural characteristics allowing Mim1 to fulfil its function are. The N- and C-terminal domains of Mim1 are crucial neither for the function of the protein nor for its biogenesis. Thus, the TMS of Mim1 is the minimal functional domain of the protein. We show that Mim1 forms homo-oligomeric structures via its TMS, which contains two helix-dimerization GXXXG motifs. Mim1 with mutated GXXXG motifs did not form oligomeric structures and was inactive. With all these data taken together, we propose that the homo-oligomerization of Mim1 allows it to fulfil its function in promoting the integration of Tom20 into the mitochondrial outer membrane.  相似文献   

8.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   

9.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   

10.
The Parkinson disease-associated kinase Pink1 is targeted to mitochondria where it is thought to regulate mitochondrial quality control by promoting the selective autophagic removal of dysfunctional mitochondria. Nevertheless, the targeting mode of Pink1 and its submitochondrial localization are still not conclusively resolved. The aim of this study was to dissect the mitochondrial import pathway of Pink1 by use of a highly sensitive in vitro assay. Mutational analysis of the Pink1 sequence revealed that its N terminus acts as a genuine matrix localization sequence that mediates the initial membrane potential (Δψ)-dependent targeting of the Pink1 precursor to the inner mitochondrial membrane, but it is dispensable for Pink1 import or processing. A hydrophobic segment downstream of the signal sequence impeded complete translocation of Pink1 across the mitochondrial inner membrane. Additionally, the C-terminal end of the protein promoted the retention of Pink1 at the outer membrane. Thus, multiple targeting signals featured by the Pink1 sequence result in the final localization of both the full-length protein and its major Δψ-dependent cleavage product to the cytosolic face of the outer mitochondrial membrane. Full-length Pink1 and deletion constructs resembling the natural Pink1 processing product were found to assemble into membrane potential-sensitive high molecular weight protein complexes at the mitochondrial surface and displayed similar cytoprotective effects when expressed in vivo, indicating that both species are functionally relevant.  相似文献   

11.
Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.  相似文献   

12.
Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.  相似文献   

13.
Heterotrimeric serine/threonine protein phosphatase 2A (PP2A) consists of scaffolding (A), catalytic (C), and variable (B, B', and B') subunits. Variable subunits dictate subcellular localization and substrate specificity of the PP2A holoenzyme. The Bbeta regulatory subunit gene is mutated in spinocerebellar ataxia type 12, and one of its splice variants, Bbeta2, targets PP2A to mitochondria to promote apoptosis in PC12 cells (Dagda, R. K., Zaucha, J. A., Wadzinski, B. E., and Strack, S. (2003) J. Biol. Chem. 278, 24976-24985). Here, we report that Bbeta2 is localized to the outer mitochondrial membrane by a novel mechanism, combining a cryptic mitochondrial import signal with a structural arrest domain. Scanning mutagenesis demonstrates that basic and hydrophobic residues mediate mitochondrial association and the proapoptotic activity of Bbeta2. When fused to green fluorescent protein, the N terminus of Bbeta2 acts as a cleavable mitochondrial import signal. Surprisingly, full-length Bbeta2 is not detectably cleaved and is retained at the outer mitochondrial membrane, even though it interacts with the TOM22 import receptor, as shown by luciferase complementation in intact cells. Mutations that open the C-terminal beta-propeller of Bbeta2 facilitate mitochondrial import, indicating that this rigid fold acts as a stop-transfer domain by resisting the partial unfolding step prerequisite for matrix translocation. Because hybrids of prototypical import and beta-propeller domains recapitulate this behavior, we predict the existence of other similarly localized proteins and a selection against highly stable protein folds in the mitochondrial matrix. This unfolding-resistant targeting to the mitochondrial translocase is necessary but not sufficient for the proapoptotic activity of Bbeta2, which also requires association with the rest of the PP2A holoenzyme.  相似文献   

14.
Previously we purified a cytosolic factor that stimulates the import of the extrapeptide (the synthetic peptide of the presequence of ornithine aminotransferase) into the mitochondrial matrix (Ono, H., and Tuboi, S., 1988, J. Biol. Chem. 263, 3188-3193). In this work this cytosolic factor was shown also to stimulate the import of the precursors of ornithine aminotransferase, a large subunit of succinate dehydrogenase, and sulfite oxidase. The amounts of these precursors bound to the outer mitochondrial membrane were increased by this cytosolic factor, suggesting that the cytosolic factor participates in the recognition step in the import process of the precursor protein. When the cytosolic factor was applied to an ATP-agarose column, the import-stimulating activity was recovered entirely in the unadsorbed fraction. Immunochemical studies showed that in these conditions the 70-kDa heat shock-related protein (Hsp 70) was present exclusively in the fraction adsorbed to the ATP-agarose column. The cytosolic factor is thus different from the 70-kDa heat shock-related protein, which was identified as a factor required for the import of mitochondrial proteins in yeast. The cytosolic factor was also detected in the cytosol of rat liver cells, and a considerable amount of this factor was recovered from rat liver mitochondria by washing them with high salt buffer, suggesting that the cytosolic factor has affinity to the outer mitochondrial membrane and binds to its receptor on the membrane. From these results, we conclude that the cytosolic factor forms a complex with the precursor of mitochondrial protein and then this complex binds to the outer mitochondrial membrane, probably via the receptor of the cytosolic factor.  相似文献   

15.
Bax is a member of the Bcl-2 family that, together with Bak, is required for permeabilisation of the outer mitochondrial membrane (OMM). Bax differs from Bak in that it is predominantly cytosolic in healthy cells and only associates with the OMM after an apoptotic signal. How Bax is targeted to the OMM is still a matter of debate, with both a C-terminal tail anchor and an N-terminal pre-sequence being implicated. We now show definitively that Bax does not contain an N-terminal import sequence, but does have a C-terminal anchor. The isolated N terminus of Bax cannot target a heterologous protein to the OMM, whereas the C terminus can. Furthermore, if the C terminus is blocked, Bax fails to target to mitochondria upon receipt of an apoptotic stimulus. Zebra fish Bax, which shows a high degree of amino-acid homology with mammalian Bax within the C terminus, but not in the N terminus, can rescue the defective cell-death phenotype of Bax/Bak-deficient cells. Interestingly, we find that Bax mutants, which themselves cannot target mitochondria or induce apoptosis, are recruited to clusters of activated wild-type Bax on the OMM of apoptotic cells. This appears to be an amplification of Bax activation during cell death that is independent of the normal tail anchor-mediated targeting.  相似文献   

16.
The mitochondrion depends upon the import of cytosolically synthesized preproteins for most of the proteins that comprise its structural elements and metabolic pathways. Here we have examined the influence of redox conditions on mitochondrial preprotein import and processing by mammalian mitochondria. Paraquat pretreatment of isolated mitochondria inhibited the subsequent import preornithine transcarbamylase (pOTC) in vitro. In intact cells oxidizing conditions led to decreased levels of mature OTC and accumulation of its preprotein. Implicating a mitochondrial import lesion, the fluorescence of pOTC-GFP (a protein in which the presequence of pOTC was fused to green fluorescent protein) transfected cells was decreased by paraquat treatment while cytosolic wild-type GFP remained largely unaffected. The accumulation of preproteins was enhanced by proteasome inhibitors. We observed that precursor proteins that failed to be imported, due to oxidizing conditions or an intrinsically slower import rate, are susceptible to degradation. Inhibition of the proteasome was also found to lead to higher levels of the translocase outer membrane protein 20 (Tom20) and to the perinuclear accumulation of mitochondria. These studies indicate that cellular redox conditions influence mitochondrial import, which, in turn, affects mitochondrial protein levels. A role for the proteasome in this process and in general mitochondrial function was also indicated.  相似文献   

17.
Little is known about the mechanism of mitochondrial division. We show here that mitochondria are disrupted by mutations in a C. elegans dynamin-related protein (DRP-1). Mutant DRP-1 causes the mitochondrial matrix to retract into large blebs that are both surrounded and connected by tubules of outer membrane. This indicates that scission of the mitochondrial outer membrane is inhibited, while scission of the inner membrane still occurs. Overexpressed wild-type DRP-1 causes mitochondria to become excessively fragmented, consistent with an active role in mitochondrial scission. DRP-1 fused to GFP is observed in spots on mitochondria where scission eventually occurs. These data indicate that wild-type DRP-1 contributes to the final stages of mitochondrial division by controlling scission of the mitochondrial outer membrane.  相似文献   

18.
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.  相似文献   

19.
Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.  相似文献   

20.
Mitochondrial protein import is thought to involve the sequential interaction of preproteins with binding sites on cis and trans sides of the membranes. For translocation across the outer membrane, preproteins first interact with the cytosolic domains of import receptors (cis) and then are translocated through a general import pore, in a process proposed to involve binding to a trans site on the intermembrane space (IMS) side. Controversial results have been reported for the role of the IMS domain of the essential outer membrane protein Tom22 in formation of the trans site. We show with different mutant mitochondria that a lack of the IMS domain only moderately reduces the direct import of preproteins with N-terminal targeting sequences. The dependence of import on the IMS domain of Tom22 is significantly enhanced by removing the cytosolic domains of import receptors or by performing import in two steps, i.e., accumulation of a preprotein at the outer membrane in the absence of a membrane potential (delta psi) and subsequent import after reestablishment of a delta psi. After the removal of cytosolic receptor domains, two-step import of a cleavable preprotein strictly requires the IMS domain. In contrast, preproteins with internal targeting information do not depend on the IMS domain of Tom22. We conclude that the negatively charged IMS domain of Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences, in agreement with the acid chain hypothesis of mitochondrial protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号