首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, ageotropum pea mutant was used to determine the threshold time for perception of an osmotic stimulation in the root cap and the time requirement for transduction and transmission of the hydrotropic signal from the root cap to the elongation region. The threshold time for the perception of an osmotic stimulation was compared to current estimates of threshold times for graviperception in roots. The time required for transduction and transmission in the hydrotropic response of ageotropum was compared to the time requirement in the gravity response of Alaska pea roots. We determined that threshold time for perception of an osmotic stimulation in the root cap is very rapid, occurring in less than 2 min following the application of sorbitol to the root cap. Furthermore, a single 5 min exposure of sorbitol to the root cap fully induced a hydrotropic response. We also found that transduction and transmission of an osmotic stimulus requires 90-120 min for movement from the root cap to more basal tissues involved in differential growth leading to root curvature. The very rapid threshold time for perception of root hydrotropism is similar to those times reported for root gravitropism. However, the time required for the transduction and transmission of an osmotic stimulation from the root cap is significantly longer than the time required in gravitropism. These results suggest that there must exist some differences between root hydrotropism and gravitropism in either the rate or mechanisms of transduction and transmission of the tropistic signal from the root cap.  相似文献   

2.
Recent studies indicate that roots of ageotropum seedlings can be used to study the hydrotropic response of roots independent of physiological events related to the gravity response of roots. There is evidence that Ca2+ ions are important in both the gravitropic and hydrotropic response of roots. In this study, we have compared three fully graviresponsive pea cultivars and the ageotropum mutant with regard to: 1) general root anatomy, 2) the effects of unilateral Ca application to both the root cap and DEZ region on root curvature, and 4) effects of unilateral application of EGTA to the DEZ region.  相似文献   

3.
Root hydrotropism of an agravitropic pea mutant, ageotropum   总被引:3,自引:0,他引:3  
We have partially characterized root hydrotropism of an agravitropic pea mutant, ageotropum (from Pisum sativum L. cv. Weibull's Weitor), without interference of gravitropism. Lowering the atmospheric air humidity inhibited root elongation and caused root curvature toward the moisture-saturated substrate in ageotropum pea. Removal of root tips approximately 1.5 mm in length blocked the hydrotropic response. A computer-assisted image analysis showed that the hydrotropic curvature in the roots of ageotropum pea was chiefly due to a greater inhibition of elongation on the humid side than the dry side of the roots. Similarly, gravitropic curvature of Alaska pea roots resulted from inhibition of elongation on the lower side of the horizontally placed roots, while the upper side of the roots maintained a normal growth rate. Gravitropic bending of Alaska pea roots was apparent 30 min after stimulation, whereas differential growth as well as curvature in positive root hydrotropism of ageotropum pea became visible 4–5 h after the continuous hydrostimulation. Application of 2,3,5-triiodobenzoic acid or ethyleneglycol-bis-( β -aminoethylether)-N,N,N',N'-tetraacetic acid was inhibitory to both root hydrotropism of ageotropum pea and root gravitropism of Alaska pea. Some mutual response mechanism for both hydrotropism and gravitropism may exist in roots, although the stimulusperception mechanisms differ from one another.  相似文献   

4.
Roots of the agravitropic pea (Pisum sativum L.) mutant ageotropum show positive hydrotopism, whereas roots of Alaska peas are hydrotropically almost non-responsive. When the gravitropic response was nullified by rotation on clinostats, however, roots of Alaska peas showed unequivocal positive hydrotropism in response to a water potential gradient. These results suggest that roots of Alaska peas possess normal ability to respond hydrotropicallly and their weak hydrotropic response results from a counteracting effect of gravitropism.  相似文献   

5.
Hydrotropism: The current state of our knowledge   总被引:2,自引:0,他引:2  
The response of roots to a moisture gradient has been reexamined, and positive hydrotropism has been demonstrated in recent years. Agravitropic roots of a pea mutant have contributed to the studies on hydrotropism. The kinetics of hydrotropic curvature, interactions between hydrotropism and gravitropism, moisture gradients required for the induction of hydrotropism, the sensing site for moisture gradients, characteristics of hydrotropic signal and differential growth, and calcium involvement in signal transduction have been subjects of these studies. This review summarizes the current state of our knowledge on hydrotropism in roots.  相似文献   

6.
The response of roots to a moisture gradient has been reexamined, and positive hydrotropism has been demonstrated in recent years. Agravitropic roots of a pea mutant have contributed to the studies on hydrotropism. The kinetics of hydrotropic curvature, interactions between hydrotropism and gravitropism, moisture gradients required for the induction of hydrotropism, the sensing site for moisture gradients, characteristics of hydrotropic signal and differential growth, and calcium involvement in signal transduction have been subjects of these studies. This review summarizes the current state of our knowledge on hydrotropism in roots.  相似文献   

7.
Gravity signal transduction in primary roots   总被引:8,自引:0,他引:8  
AIMS: The molecular mechanisms that correlate with gravity perception and signal transduction in the tip of angiosperm primary roots are discussed. SCOPE: Gravity provides a cue for downward orientation of plant roots, allowing anchorage of the plant and uptake of the water and nutrients needed for growth and development. Root gravitropism involves a succession of physiological steps: gravity perception and signal transduction (mainly mediated by the columella cells of the root cap); signal transmission to the elongation zone; and curvature response. Interesting new insights into gravity perception and signal transduction within the root tip have accumulated recently by use of a wide range of experimental approaches in physiology, biochemistry, genetics, genomics, proteomics and cell biology. The data suggest a network of signal transduction pathways leading to a lateral redistribution of auxin across the root cap and a possible involvement of cytokinin in initial phases of gravicurvature. CONCLUSION: These new discoveries illustrate the complexity of a highly redundant gravity-signalling process in roots, and help to elucidate the global mechanisms that govern auxin transport and morphogenetic regulation in roots.  相似文献   

8.
We have studied hydrotropism and its interaction with gravitropism in agravitropic roots of a pea mutant and normal roots of peas (Pisum sativum L.) and maize (Zea mays L.). The interaction between hydrotropism and gravitropism in normal roots of peas or maize were also examined by nullifying the gravitropic response on a clinostat and by changing the stimulus-angle for gravistimulation. Depending on the intensity of both hydrostimulation and gravistimulation, hydrotropism and gravitropism of seedling roots strongly interact with one another. When the gravitropic response was reduced, either genetically or physiologically, the hydrotropic response of roots became more unequivocal. Also, roots more sensitive to gravity appear to require a greater moisture gradient for the induction of hydrotropism. Positive hydrotropism of roots occurred due to a differential growth in the elongation zone; the elongation was much more inhibited on the moistened side than on the dry side of the roots. It was suggested that the site of sensory perception for hydrotropism resides in the root cap, as does the sensory site for gravitropism. Furthermore, an auxin inhibitor, 2,3,5-triiodobenzoic acid (TIBA), and a calcium chelator, ethyleneglycol-bis-(-aminoethylether)-N,N,N,N- tetraacetic acid (EGTA), inhibited both hydrotropism and gravitropism in roots. These results suggest that the two tropisms share a common mechanism in the signal transduction step.  相似文献   

9.
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.  相似文献   

10.
This study established that the mutant creep and ageotropum phenotypes are expressed differently during development in pea (Pisum sativum L.). Etiolated ageotropum stems grew at a wide range of angles, whereas etiolated creep stems emerged vertically from the compost. However, when etiolated creep stems were subjected to additional gravitropic demands, such as growth to excessive height or reorientation, abnormality was detectable. When plants were handled to a greater extent, earlier loss of vertical growth resulted. In light-grown shoots, creep lost vertical orientation, whereas ageotropum grew more normally. Root systems of creep exhibited normal growth patterns, whereas ageotropum main and lateral roots grew at abnormal angles. Thus, the ageotropum mutation strongly affects gravitropism in roots and etiolated stems, whereas the creep mutation affects both light- and dark-grown stems, but is most apparent in older, taller plants.  相似文献   

11.
Takahashi N  Goto N  Okada K  Takahashi H 《Planta》2002,216(2):203-211
We have developed experimental systems to study hydrotropism in seedling roots of Arabidopsis thaliana (L.) Heynh. Arabidopsis roots showed a strong curvature in response to a moisture gradient, established by applying 1% agar and a saturated solution of KCl or K(2)CO(3) in a closed chamber. In this system, the hydrotropic response overcame the gravitropic response. Hydrotropic curvature commenced within 30 min and reached 80-100 degrees within 24 h of hydrostimulation. When 1% agar and agar containing 1 MPa sorbitol were placed side-by-side in humid air, a water potential gradient formed at the border between the two media. Although the gradient changed with time, it still elicited a hydrotropic response in Arabidopsis roots. The roots curved away from 0.5-1.5 MPa of sorbitol agar. Various Arabidopsis mutants were tested for their hydrotropic response. Roots of aba1-1 and abi2-1 mutants were less sensitive to hydrotropic stimulation. Addition of abscisic acid restored the normal hydrotropic response in aba1-1 roots. In comparison, mutants that exhibit a reduced response to gravity and auxin, axr1-3 and axr2-1, showed a hydrotropic response greater than that of the wild type. Wavy mutants, wav2-1 and wav3-1, showed increased sensitivity to the induction of hydrotropism by the moisture gradient. These results suggest that auxin plays divergent roles in hydrotropism and gravitropism, and that abscisic acid plays a positive role in hydrotropism. Furthermore, hydrotropism and the wavy response may share part of a common molecular pathway controlling the directional growth of roots.  相似文献   

12.
For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.  相似文献   

13.
Roots display positive hydrotropism in response to moisture gradient. Hydrotropism regulates the directional growth by interaction with other growth movements. Using the seedlings of pea, cucumber, maize and wheat, we have revealed that the root cap perceives the moisture gradient and that auxin and calcium are involved in hydrotropism. However, molecular mechanisms for stimulus perception or signal transduction in hydrotropism are still remained unrevealed. To dissect the molecular mechanism underlying hydrotropism in seedling roots, we established a method for screening Arabidopsis mutants defective in root hydrotropism. Among about 20,000 M2 seedlings of Arabidopsis plants treated with EMS, we successfully obtained 12 mutants of which root hydrotropism was reduced to various extents. We named them root hydrotropism (rhy) and examined their gravitropism, phototropism, waving response and elongation growth as well as hydrotropism in roots. Roots of rhy1 mutant showed ahydrotropic response although the other responses and elongation growth of rhy1 mutant were normal. Roots of rhy2 and rhy3 mutants showed a reduced hydrotropism and abnormal responses in gravitropism, phototropism or waving pattern. Genetic analysis of the progeny produced by the backcross of rhy1 mutant to wild type suggested that rhy1 was a recessive mutation. We also examined the map position of the rhy1 locus.  相似文献   

14.
The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185–197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.Abbreviations S2 story two - S3 story three - WT wild-type  相似文献   

15.
In an attempt to explain the influence of gravity on the behaviour of ageotropic plant organs, a pea mutant (Pisum sativum ageotropum) and normal pea (Pisum sativum cv. Sabel) were examined. The mutant has a significantly lower germination rate (large seeds: 25%, small seeds: 10%) than normal pea seeds (55%). Removal of testa increased germination dramatically, the values obtained were 63 and 89%, respectively. Immediately after imbibition the mutant from which the testa had been removed, developed more slowly than normal pea seeds; after 28 h the difference in elongation rate between the two types was reversed. When continuously stimulated geotropically in the horizontal position the elongation in the mutant is larger than in the normal pea roots kept in the same position. During a 24 h period starting 48 h after imbibition the mutant root elongated 45.0 mm while the value for the normal pea root was 11.5 mm. The course of the geotropic curvature in roots of the two types has been followed during a period of 24 h. Normal pea roots develop an asymmetry in the extreme root tip region after 30 min of horizontal stimulation. After prolonged stimulation (exceeding 2 h) the asymmetry has disappeared and the curvature distributed over the entire growth region. When roots of normal pea are stimulated continuously at various angles, the optimum angle of geotropic response is 90° with decreasing responses in the order 135° (i.e. the root tip is pointing obliquely upward) and 45°. The presumed ageotropic behaviour of the mutant has only to a certain extent been confirmed in the present study. When stimulated at 135° a slight positive curvature developed; stimulation at 90° and 45° gave a slight negative curvature.  相似文献   

16.
The auxin concentration in roots of Pisum sativum ageotropum was examined by three indirect methods:
  • 1) Supply of auxin before geotropic stimulation;
  • 2) Lateral placing of the root tip;
  • 3) Inhibiting the auxin transport in half of the root.
All the results indicated supraoptimal auxin concentration. When decapitated ageotropum roots were supplied with 1.5 mm long tips from normal Pisum roots their geotropic reactivity was almost restored. The geoelectric potential of stems of Pisum sativum and its mutant ageotropum was measured. In ageotropum stems the geoelectric potential was less and the geotropic reaction appeared later than in the normal stems.  相似文献   

17.
The hydrotropic bending of roots of an ageotropic pea mutant, ageotropum, was studied in humid air in a chamber with a steady humidity gradient. We examined the effects of atmospheric humidity around the root on the water status of root tissues, as well as the wall growth and the hydraulic properties of the elongating tissues. Atmospheric humidity at the surface of the root was clearly lower on the side orientated towards the air with lower humidity than on the side orientated towards the air with higher humidity. However, there were no differences in water potential and osmotic potential between the tissues that faced air with higher and lower humidities in the elongating and mature regions. Plastic extensibility was higher in the tissues that faced the air with lower humidity than in the tissues that faced the air with higher humidity. No differences in turgor pressure and yield threshold were observed between the tissues that faced air with higher and lower humidities. Therefore, the extensibility of the cell wall appeared to be responsible for the different growth rates of tissues in root hydrotropism. A further probable cause of the hydrotropical bending of roots is changes in the hydraulic conductance in the elongating tissues. Since the hydrotropic bending of roots occurred only when a root tip was exposed to a humidity gradient, hydrotropism might occur after perception of a difference in humidity by the root tip, with accompanying changes in cell wall extensibility and hydraulic conductance.  相似文献   

18.
Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response.  相似文献   

19.
Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.  相似文献   

20.
The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.Key words: gravitropism, lateral roots, pgm-1, root system architecturePlants are extremely sensitive to numerous environmental stimuli, including touch, gravity, light and humidity, among many others. As a pervasive signal on Earth, gravity exerts a persistent influence on plant morphogenesis by directing the primary roots and shoots of most species to align parallel with the gravity vector. The vertical orientations obtained by primary organs has provided for a simple assay of gravitropic responses, and much of our understanding of gravity stimulus perception, signal transduction and differential growth response has been gained by a focus on primary organ systems.With respect to gravity stimulus perception, there is strong evidence that the movement of starch-filled plastids plays a primary role in the detection of a change in the orientation of an organ relative to gravity.1 Consistent with this evidence, we have recently demonstrated that roots of the starchless mutant of Arabidopsis, pgm-1, respond to gravity at approximately 30% the rate of wild-type roots, and that they lack the wild-type relationship between cap angle and response rate.2 Furthermore, pgm-1 roots lack the gravity-induced gradient of auxin reported by DR5-GFP expression, found in wild-type roots, linking plastid sedimentation with the differential auxin transport thought to mediate the differential growth response.3While our understanding of root gravitropism has grown in sophistication and detail, the emerging picture has been compiled almost entirely from observations of primary organ behavior. The degree to which our model of signaling involved in primary root gravitropic responses applies to the behavior of lateral roots is an almost entirely open question, with only a handful of studies investigating lateral root gravitropic responses.46 Toward that end, we have begun to explore the question of lateral root gravitropism in the overall context of root system architecture, and wish to report here on the gravitropic response of lateral roots in wild-type and pgm-1 genetic backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号