首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The interaction between troponin I and troponin C plays a critical role in the regulation of muscle contraction. In this study the interaction between troponin C (TnC) and the N-terminal region of TnI was investigated by the synthesis of three TnI peptides (residues 1-40/Rp, 10-40, and 20-40). The regulatory peptide (Rp) on binding to TnC prevents the ability of TnC to release the inhibition of the acto-S1-tropomyosin ATPase activity caused by TnI or the TnI inhibitory peptide (Ip), residues 104-115. A stable complex between TnC and Rp in the presence of Ca2+ was demonstrated by polyacrylamide gel electrophoresis in the presence of 6 M urea. Rp was able to displace TnI from a preformed TnI.TnC complex. In the absence of Ca2+, Rp was unable to maintain a complex with TnC in benign conditions of polyacrylamide gel electrophoresis which demonstrates the Ca(2+)-dependent nature of this interaction. Size-exclusion chromatography demonstrated that the TnC.Rp complex consisted of a 1:1 complex. The results of these studies have shown that the N-terminal region of TnI (1-40) plays a critical role in modulating the Ca(2+)-sensitive release of TnI inhibition by TnC.  相似文献   

2.
Luo Y  Leszyk J  Li B  Gergely J  Tao T 《Biochemistry》2000,39(50):15306-15315
Skeletal muscle troponin C (TnC) adopts an extended conformation when crystallized alone and a compact one when crystallized with an N-terminal troponin I (TnI) peptide, TnI(1-47) [Vassylyev et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4847-4852]. The N-terminal region of TnI (residues 1-40) was suggested to play a functional role of facilitating the movement of TnI's inhibitory region between TnC and actin [Tripet et al. (1997) J. Mol. Biol. 271, 728-750]. To test this hypothesis and to investigate the conformation of TnC in the intact troponin complex and in solution, we attached fluorescence and photo-cross-linking probes to a mutant TnI with a single cysteine at residue 6. Distances from this residue to residues of TnC were measured by the fluorescence resonance energy transfer technique, and the sites of photo-cross-linking in TnC were determined by microsequencing and mass spectrometry following enzymatic digestions. Our results show that in the troponin complex neither the distance between TnI residue 6 and TnC residue 89 nor the photo-cross-linking site in TnC, Ser133, changes with Ca(2+), in support of the notion that this region plays mainly a structural rather than a regulatory role. The distances to residues 12 and 41 in TnC's N-domain are both considerably longer than those predicted by the crystal structure of TnC.TnI(1-47), supporting an extended rather than a compact conformation of TnC. In the binary TnC.TnI complex and the presence of Ca(2+), Met43 in TnC's N-domain was identified as the photo-cross-linking site, and multiple distances between TnI residue 6 and TnC residue 41 were detected. This was taken to indicate increased flexibility in TnC's central helix and that TnC dynamically changes between a compact and an extended conformation when troponin T (TnT) is absent. Our results further emphasize the difference between the binary TnC.TnI and the ternary troponin complexes and the importance of using intact proteins in the study of structure-function relationships of troponin.  相似文献   

3.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

4.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

5.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

6.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

7.
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.  相似文献   

8.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca2(+)-dependent regulation of vertebrate striated muscle contraction. Previous attempts to elucidate the molecular details of TnC-TnI interactions, mainly involving chemically modified proteins or fragments thereof, have led to the widely accepted idea that the "inhibitory region" (residues 96-116) of TnI binds to an alpha-helical segment of TnC comprising residues 89-100 in the nonregulatory, COOH-terminal domain. In an attempt to identify other possible physiologically important interactions between these proteins, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) was used to produce zero-length cross-links in the complex of rabbit skeletal muscle TnC and TnI. TnC was activated with EDC and N-hydroxysuccinimide (NHS) and then mixed with an equimolar amount of TnI [Grabarek, Z., & Gergely, J. (1988) Biophys. J. 53, 392a]. The resulting cross-linked TnCXI was cleaved with cyanogen bromide, trypsin, and Staphylococcus aureus V8 protease (SAP). Cross-linked peptides were purified by reverse-phase HPLC and characterized by sequence analysis. The results indicated that residues from the regulatory Ca2(+)-binding site II in the NH2-terminal domain of TnC (residues 46-78) formed cross-links with TnI segments spanning residues 92-167. The most highly cross-linked residues in TnI were Lys-105 and Lys-107, located in the inhibitory region. These results yield the first evidence for an interaction between the N-terminal domain of TnC and the inhibitory region of TnI.  相似文献   

9.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

10.
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey skeletal troponin C (TnC), using the synthetic TnI analogue N alpha-acetyl[19FPhe106]TnI(104-115)amide. Dissociation constants of Kd = (3.7 +/- 3.1) x 10(-5) M for the apo interaction and Kd = (4.8 +/- 1.8) x 10(-5) M for the calcium(II)-saturated interaction were obtained using a 1:1 binding model of peptide to protein. The 19F NMR chemical shifts for the F-phenylalanine of the bound peptide are different from the apo- and calcium-saturated protein, indicating a different environment for the bound peptide. The possibility of 2:1 binding of the peptide to Ca(II)-saturated TnC was tested by calculating the fit of the experimental titration data to a series of theoretical binding curves in which the dissociation constants for the two hypothetical binding sites were varied. We obtained the best fit for 0.056 mM less than or equal to Kd1 less than or equal to 0.071 mM and 0.5 mM less than or equal to Kd2 less than or equal to 2.0 mM. These results allow the possibility of a second peptide binding site on calcium(II)-saturated TnC with an affinity 10- to 20-fold weaker than that of the first site.  相似文献   

11.
Ward DG  Brewer SM  Gallon CE  Gao Y  Levine BA  Trayer IP 《Biochemistry》2004,43(19):5772-5781
Phosphorylation of the cardiac troponin complex by PKA at S22 and S23 of troponin I (TnI) accelerates Ca(2+) release from troponin C (TnC). The region of TnI around the bisphosphorylation site binds to, and stabilizes, the Ca(2+) bound N-terminal domain of TnC. Phosphorylation interferes with this interaction between TnI and TnC resulting in weaker Ca(2+) binding. In this study, we used (1)H-(15)N-HSQC NMR to investigate at the atomic level the interaction between an N-terminal fragment of TnI consisting of residues 1-64 of TnI (I1-64) and TnC. We produced several mutants of I1-64, TnI, and TnC to test the contribution of certain residues to the transmission of the phosphorylation signal in both NMR experiments and functional assays. We also investigated how phosphorylation of the PKC sites in I1-64 (S41 and S43) affects the interaction of I1-64 with TnC. We found that phosphorylation of S22 and S23 produced only localized effects in the structure of I1-64 between residues 24 and 34. Residues 1-17 of I1-64 did not bind to TnC, and residues 38-64 bound tightly to the C-terminal domain of TnC regardless of phosphorylation. Residues 22-34 bound weakly to TnC in a phosphorylation sensitive manner. Bisphosphorylation prevented this phosphorylation switch region from interacting with TnC. Systematic mutation of residues in the phosphorylation switch did not prevent PKA phosphorylation from accelerating Ca(2+) release from troponin. We conclude that the phosphorylation switch binds to TnC via an extended interaction site spanning residues R19 to A34.  相似文献   

12.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca(2+)-dependent regulation of vertebrate striated muscle contraction. In the present study, we investigated the sites of interaction between the N-terminal regulatory domain of TnC and the inhibitory region (residues 96-116) of TnI, using a mutant rabbit skeletal TnC (designated as TnC57) that contains a single Cys at residue 57 in the C-helix. TnC57 was modified with the photoreactive cross-linker 4-maleimidobenzophenone (BP-Mal), and, after formation of a binary complex with TnI, cross-linking between the proteins was induced by photolysis. The resulting product was cleaved with CNBr and several proteases, and peptides containing cross-links were purified and subjected to amino acid sequencing. The results show that Cys-57 of TnC57 is cross-linked to the segment of TnI spanning residues 113-121. Previously, we showed that Cys-98 of TnC can be cross-linked via BP-Mal to TnI residues 103-110 (Leszyk, J., Collins, J.H., Leavis, P.C., and Tao, T. (1987) Biochemistry 26, 7042-7047). Taken together, these results demonstrate that both the C- and the N-terminal domains of TnC interact with the inhibitory region of TnI and are consistent with the hypothesis that, in a complex with TnI, TnC adopts a more compact conformation than in the crystal structure.  相似文献   

13.
Troponin I (TnI) is the inhibitory component of troponin, the ternary complex that regulates skeletal and cardiac muscle contraction. Previous work showed that the C-terminal region of TnI, when linked to the "inhibitory region" (residues 98-116), possesses the major regulatory functions of the molecule (Farah, C. S., Miyamoto, C. A., Ramos, C. H. I., Silva, A. C. R., Quaggio, R. B., Fujimori, K., Smillie, L. B., and Reinach, F. C. (1994) J. Biol. Chem. 269, 5230-5240). To investigate these functions in more detail, serial deletion mutants of the C-terminal region of TnI were constructed. These experiments showed that longer C-terminal deletions result in lower inhibition of the actomyosin ATPase activity and weaken the interaction with the N-terminal domain of troponin C (TnC), consistent with the antiparallel model for the interaction between these two proteins. The conclusion is that the whole C-terminal region of TnI is necessary for its full regulatory activity. The region between residues 137 and 144, which was shown to have homology with residues 108-115 in the inhibitory region (Farah, C. S., and Reinach, F. C. (1995) FASEB J. 9, 755-767), is involved in the binding to TnC. The region between residues 98 and 129 is involved in modulating the affinity of TnC for calcium. The C-terminal residues 166-182 are involved in the binding of TnI to thin filament. A model for the function of TnI is discussed.  相似文献   

14.
Structural consequences of cardiac troponin I phosphorylation   总被引:1,自引:0,他引:1  
beta-Adrenergic stimulation of the heart results in bisphosphorylation of the N-terminal extension of cardiac troponin I (TnI). Bisphosphorylation of TnI reduces the affinity of the regulatory site on troponin C (TnC) for Ca(2+) by increasing the rate of Ca(2+) dissociation. What remains unclear is how the phosphorylation signal is transmitted from one subunit of troponin to another. We have produced a series of mutations in the N-terminal extension of TnI designed to further our understanding of the mechanisms involved. The ability of phosphorylation of the mutant TnIs to affect Ca(2+) sensitivity has been assessed. We find that the Pro residues found in a conserved (Xaa-Pro)(4) motif N-terminal to the phosphorylation sites are not required for the effect of the N-terminal extension on Ca(2+) binding in the presence or absence of phosphorylation. Our experiments also reveal that the full effects of phosphorylation are seen even when residues 1-15 of TnI are deleted. If further residues are removed, not only does the effect of phosphorylation diminish but deletion of the N-terminal extension mimics phosphorylation. We propose that TnI residues 16-29 bind to TnC stabilizing the "open" Ca(2+)-bound state. Phosphorylation (or deletion) prevents this binding, accelerating Ca(2+) release.  相似文献   

15.
Kobayashi T  Zhao X  Wade R  Collins JH 《Biochemistry》1999,38(17):5386-5391
We have mutated eight conserved, charged amino acid residues in the N-terminal, regulatory domain of troponin C (TnC) so we could investigate their role in troponin-linked Ca2+ regulation of muscle contraction. These residues surround a hydrophobic pocket in the N-terminal domain of TnC which, when Ca2+ binds to regulatory sites in this domain, is exposed and interacts with the inhibitory region of troponin I (TnI). We constructed three double mutants (E53A/E54A, E60A/E61A, and E85A/D86A) and two single mutants (R44A and R81A) of rabbit fast skeletal muscle troponin C (TnC) in which the charged residues were replaced with neutral alanines. All five of these mutants retained TnC's ability to bind TnI in a Ca2+-dependent manner, to neutralize TnI's inhibition of actomyosin S1 ATPase activity, and to form a ternary complex with TnI and troponin T (TnT). Ternary complexes formed with TnC(R44A) or TnC(R81A) regulated actomyosin S1 ATPase activity normally, with TnI-based inhibition in the absence of Ca2+ and TnT-based activation in the presence of Ca2+. TnC(E53A/E54A) and TnC(E85A/D86A) interacted weakly with TnT, as judged by native gel electrophoresis. Ternary complexes formed with these mutants inhibited actomyosin S1 ATPase activity in both the presence and absence of Ca2+, and did not undergo Ca2+-dependent structural changes in TnI which can be detected by limited chymotryptic digestion. TnC(E60A/E61A) interacted normally with TnT. Its ternary complex showed Ca2+-dependent structural changes in TnI, inhibited actomyosin S1 ATPase in the absence of Ca2+, but did not activate ATPase in the presence of Ca2+. This is the first demonstration that selective mutation of TnC can abolish the activating effect of troponin while its inhibitory function is retained. Our results suggest the existence of an elaborate network of protein-protein interactions formed by TnI, TnT, and the N-terminal domain of TnC, all of which are important in the Ca2+-dependent regulation of muscle contraction.  相似文献   

16.
The regulatory activity of troponin C is reversibly inhibited by a disulfide bridge between cysteine residues introduced by site-directed mutagenesis in positions 48 and 82 (TnC48/82) in the N-terminal domain of rabbit skeletal troponin C (sTnC; Grabarek, Z., Tan, R.-Y., Tao, T., and Gergely, J. (1990) Nature 345, 132-135). In the present work we have investigated the effects of the disulfide on structural properties of TnC48/82 monitored by CD spectroscopy and limited trypsinolysis. The CD spectra of the mutant protein in the oxidized form (oxTnC48/82) with and without Ca2+ are similar to the corresponding ones of the reduced and carboxamidomethylated form (CAMTnC48/82), indicating that the disulfide has essentially no effect on the overall secondary structure. The N-terminal domain of oxTnC48/82 is resistant to thermal unfolding, but that of CAMTnC48/82 is only slightly more stable than the corresponding domain of sTnC. In the presence of Ca2+ oxTnC48/82 is more resistant to trypsinolysis than sTnC whereas the rate of tryptic digestion of CAMTnC48/82 is the same as that of sTnC, indicating that peptide bonds adjacent to lysine residues at position 84 and 88, the sites of tryptic attack, are protected by the disulfide. The disulfide cross-linked N-terminal peptide of TnC48/82 does not bind TnI, unlike its reduced or carboxamidomethylated forms. Our data indicate that the disulfide between Cys48 and Cys82 stabilizes the structure of the N-terminal domain of TnC and blocks its ability to interact with TnI. The effects of the disulfide appear to be restricted to the N-terminal domain of TnC.  相似文献   

17.
The goal of this study was to examine the mechanism of magnesium binding to the regulatory domain of skeletal troponin C (TnC). The fluorescence of Trp(29), immediately preceding the first calcium-binding loop in TnC(F29W), was unchanged by addition of magnesium, but increased upon calcium binding with an affinity of 3.3 microm. However, the calcium-dependent increase in TnC(F29W) fluorescence could be reversed by addition of magnesium, with a calculated competitive magnesium affinity of 2.2 mm. When a Z acid pair was introduced into the first EF-hand of TnC(F29W), the fluorescence of G34DTnC(F29W) increased upon addition of magnesium or calcium with affinities of 295 and 1.9 microm, respectively. Addition of 3 mm magnesium decreased the calcium sensitivity of TnC(F29W) and G34DTnC(F29W) approximately 2- and 6-fold, respectively. Exchange of G34DTnC(F29W) into skinned psoas muscle fibers decreased fiber calcium sensitivity approximately 1.7-fold compared with TnC(F29W) at 1 mm [magnesium](free) and approximately 3.2-fold at 3 mm [magnesium](free). Thus, incorporation of a Z acid pair into the first EF-hand allows it to bind magnesium with high affinity. Furthermore, the data suggests that the second EF-hand, but not the first, of TnC is responsible for the competitive magnesium binding to the regulatory domain.  相似文献   

18.
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.  相似文献   

19.
We report here on the stability and folding of the 91 residue alpha-helical F29W N-terminal domain of chicken skeletal muscle troponin C (TnC(1-91)F29W), the thin filament calcium-binding component. Unfolding was monitored by differential scanning calorimetry, circular dichroism, and intrinsic fluorescence spectroscopy using urea, pH, and temperature as denaturants, in the absence and in the presence of calcium. The unfolding of TnC(1-91)F29W was reversible and did not follow a two-state transition, suggesting that an intermediate may be present during this reaction. Our results support the hypothesis that intermediates are likely to occur during the folding of small proteins and domains. The physiological significance of the presence of an intermediate in the folding pathway of troponin C is discussed.  相似文献   

20.
Using surface plasmon resonance (SPR)-based biosensor analysis and fluorescence spectroscopy, the apparent kinetic constants, k(on) and k(off), and equilibrium dissociation constant, K(d), have been determined for the binding interaction between rabbit skeletal troponin C (TnC) and rabbit skeletal troponin I (TnI) regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). To carry out SPR analysis, a new peptide delivery/capture system was utilized in which the TnI peptides were conjugated to the E-coil strand of a de novo designed heterodimeric coiled-coil domain. The TnI peptide conjugates were then captured via dimerization to the opposite strand (K-coil), which was immobilized on the biosensor surface. TnC was then injected over the biosensor surface for quantitative binding analysis. For fluorescence spectroscopy analysis, the environmentally sensitive fluoroprobe 5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid (1,5-IAEDANS) was covalently linked to Cys98 of TnC and free TnI peptides were added. SPR analysis yielded equilibrium dissociation constants for TnC (plus Ca(2+)) binding to the C-terminal TnI regulatory peptides TnI(96-131) and TnI(96-139) of 89nM and 58nM, respectively. The apparent association and dissociation rate constants for each interaction were k(on)=2.3x10(5)M(-1)s(-1), 2.0x10(5)M(-1)s(-1) and k(off)=2.0x10(-2)s(-1), 1.2x10(-2)s(-1) for TnI(96-131) and TnI(96-139) peptides, respectively. These results were consistent with those obtained by fluorescence spectroscopy analysis: K(d) being equal to 130nM and 56nM for TnC-TnI(96-131) and TnC-TnI(96-139), respectively. Interestingly, although the inhibitory region peptide (TnI(96-115)) was observed to bind with an affinity similar to that of TnI(96-131) by fluorescence analysis (K(d)=380nM), its binding was not detected by SPR. Subsequent investigations examining salt effects suggested that the binding mechanism for the inhibitory region peptide is best characterized by an electrostatically driven fast on-rate ( approximately 1x10(8) to 1x10(9)M(-1)s(-1)) and a fast off-rate ( approximately 1x10(2)s(-1)). Taken together, the determination of these kinetic rate constants permits a clearer view of the interactions between the TnC and TnI proteins of the troponin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号