首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended...  相似文献   

2.
Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia, the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza, great deal of interest has been drawn to influenza, consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus, which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances, it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.  相似文献   

3.
A/H1N1流感—世界关注的焦点   总被引:1,自引:0,他引:1  
2009年4月,A/H1N1流感在墨西哥和美国暴发。随后,疫情迅速蔓延到美洲、欧洲、亚洲多个国家。A/H1N1流感病毒是一种以前在人或动物身上从未观测到的新病毒。遗传进化和抗原特性分析表明该病毒和猪流感病毒密切相关,与人类的季节性流感病毒有明显区别。但是流行病学信息表明A/H1N1流感病毒只攻击人类,并在人与人之间传播,尚未发现动物向人类传播的情况。本文从A/H1N1流感病毒的生物学特性、临床特征、公共卫生意义等方面全面阐述了A/H1N1流感的最新研究进展,为正确认识和科学防控A/H1N1流感提供参考。  相似文献   

4.
Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses   总被引:11,自引:0,他引:11  
Zhou T  Gu W  Ma J  Sun X  Lu Z 《Bio Systems》2005,81(1):77-86
In this study, we calculated the codon usage bias in H5N1 virus and performed a comparative analysis of synonymous codon usage patterns in H5N1 virus, five other evolutionary related influenza A viruses and a influenza B virus. Codon usage bias in H5N1 genome is a little slight, which is mainly determined by the base compositions on the third codon position. By comparing synonymous codon usage patterns in different viruses, we observed that the codon usage pattern of H5N1 virus is similar with other influenza A viruses, but not influenza B virus, and the synonymous codon usage in influenza A virus genes is phylogenetically conservative, but not strain-specific. Synonymous codon usage in genes encoded by different influenza A viruses is genus conservative. Compositional constraints could explain most of the variation of synonymous codon usage among these virus genes, while gene function is also correlated to synonymous codon usages to a certain extent. However, translational selection and gene length have no effect on the variations of synonymous codon usage in these virus genes.  相似文献   

5.
The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003-2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens.  相似文献   

6.

Background  

The novel A/H1N1 influenza virus, which recently emerged in North America is most closely related to North American H1N1/N2 swine viruses. Until the beginning of 2009, North American swine H1N1/N2 viruses have only sporadically infected humans as dead-end hosts. In 2009 the A/H1N1 virus acquired the capacity to spread efficiently by human to human transmission. The novel A/H1N1 influenza virus has struck thousands of people in more than 70 countries and killed more than 140, representing a public health emergency of international concern. Here we have studied properties of hemagglutinin of A/H1N1 which may modulate virus/receptor interaction.  相似文献   

7.
Influenza A virus is a potent pathogen of annual respiratory illness with huge potential of causing occasional pandemics of catastrophic consequences. In April 2009, a novel, swine-origin influenza A H1N1/09 virus was identified in Mexico which continued to spread globally. This unique virus emerged from an avian, human, Eurasian swine viral strain and a North American swine strain belonging to the lineage of the 1930 swine virus. Till date H1N1/09 pandemic has been relatively mild and lacks the previously described molecular markers of influenza A pathogenicity and transmissibility. In this review, we will discuss the molecular and antigenic determinants of this virus and its designation as a low pathogenic strain, which carries the potential to develop into a devastating strain with subsequent mutations and reassortments.  相似文献   

8.
A型流感病毒NS1基因密码子去优化改造引起病毒毒力减弱   总被引:1,自引:0,他引:1  
根据A型流感病毒密码子使用偏嗜性,选取稀有密码子对A/Puerto Rico/8/34(H1N1)病毒NS1基因内部110个氨基酸区域进行密码子同义突变改造,并全基因合成NS基因,利用反向遗传操作技术拯救出含有密码子去优化NS1基因的重组病毒(deoNS)。体外细胞噬斑形成实验和病毒生长曲线证明该病毒在MDCK细胞内的感染和复制能力比野生型病毒低约1000倍;BALB/c小鼠体内致病力实验证明deoNS病毒不能引起小鼠发病和死亡,该病毒在小鼠肺内的复制滴度比野生型病毒低100~1000倍。本研究探索了通过基因组密码子去优化改造途径降低A型流感病毒毒力的可行性,首次证明流感病毒NS1基因密码子去优化同义突变可以降低病毒毒力,为流感减毒活疫苗的研究提供了新的思路。  相似文献   

9.
流感病毒基因的密码子偏好性及聚类分析   总被引:1,自引:0,他引:1  
徐利娟  钟金城  陈智华  穆松 《生物信息学》2010,8(2):175-179,186
流行性感冒病毒是一种造成人类及动物患流行性感冒的RNA病毒,它造成急性上呼吸道感染,并由空气迅速传播,在世界各地常有周期性的大流行。根据该病毒的基因组CDS序列,探讨了基因组序列密码子的使用模式和特性,并进行了病毒间的聚类分析。结果表明:流感病毒的G+C含量均低于A+U含量,偏向使用以A、U结尾的密码子的程度比使用以G、C结尾的较高,CUG、UCA、AGU、AGC、AGA、AGG、GUG、CCA、ACA、GGA、GCA、AUU、UGA、CAU、CAA、AAU、AAA、GAA等18个密码子为流感病毒共有的偏好性密码子,且以A结尾的居多,尤其偏爱AGA、GGA。聚类结果表明首先亚洲流感病毒H2N2和香港流感病毒H2N2聚为一类,亚洲流感病毒H1N1和俄罗斯流感病毒H1N1聚为一类,1997年和2003年~2004年发生的人禽流感聚为一类,说明它们的密码子使用的偏好性相似;而2009年爆发的甲型H1N1流感和任何一个流感的距离都比较远,说明甲型H1N1流感病毒是一种新型的病毒,不同于以往任何一种流感病毒。  相似文献   

10.
The pandemic of 1918 was caused by an H1N1 influenza A virus, which is a negative strand RNA virus; however, little is known about the nature of its direct ancestral strains. Here we applied a broad genetic and phylogenetic analysis of a wide range of influenza virus genes, in particular the PB1 gene, to gain information about the phylogenetic relatedness of the 1918 H1N1 virus. We compared the RNA genome of the 1918 strain to many other influenza strains of different origin by several means, including relative synonymous codon usage (RSCU), effective number of codons (ENC), and phylogenetic relationship. We found that the PB1 gene of the 1918 pandemic virus had ENC values similar to the H1N1 classical swine and human viruses, but different ENC values from avian as well as H2N2 and H3N2 human viruses. Also, according to the RSCU of the PB1 gene, the 1918 virus grouped with all human isolates and "classical" swine H1N1 viruses. The phylogenetic studies of all eight RNA gene segments of influenza A viruses may indicate that the 1918 pandemic strain originated from a H1N1 swine virus, which itself might be derived from a H1N1 avian precursor, which was separated from the bulk of other avian viruses in toto a long time ago. The high stability of the RSCU pattern of the PB1 gene indicated that the integrity of RNA structure is more important for influenza virus evolution than previously thought.  相似文献   

11.
Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.  相似文献   

12.
A remarkable feature of the 2009 pandemic H1N1 influenza virus is its efficient transmissibility in humans compared to that of precursor strains from the triple-reassortant swine influenza virus lineage, which cause only sporadic infections in humans. The viral components essential for this phenotype have not been fully elucidated. In this study, we aimed to determine the viral factors critical for aerosol transmission of the 2009 pandemic virus. Single or multiple segment reassortments were made between the pandemic A/California/04/09 (H1N1) (Cal/09) virus and another H1N1 strain, A/Puerto Rico/8/34 (H1N1) (PR8). These viruses were then tested in the guinea pig model to understand which segment of Cal/09 virus conferred transmissibility to the poorly transmissible PR8 virus. We confirmed our findings by generating recombinant A/swine/Texas/1998 (H3N2) (sw/Tx/98) virus, a representative triple-reassortant swine virus, containing segments of the Cal/09 virus. The data showed that the M segment of the Cal/09 virus promoted aerosol transmissibility to recombinant viruses with PR8 and sw/Tx/98 virus backgrounds, suggesting that the M segment is a critical factor supporting the transmission of the 2009 pandemic virus.  相似文献   

13.
Eleven swine influenza viruses (SIVs) isolated from pigs in Japanese institutions between 2009 and 2012 were genetically characterized. Seven H1N1 were shown to have originated from A(H1N1)pdm09 viruses. Two H1N2 viruses contained H1 and N2 genes of Japanese H1N2 SIV origin together with internal genes of A(H1N1)pdm09 viruses. Two H3N2 viruses isolated during animal quarantine were identified as triple reassortant H3N2 viruses maintained among pigs in North America. This study shows that A(H1N1)pdm09 viruses and their reassortant strains are already present in domestic pigs in Japan and that novel SIVs are possibly being imported from abroad.  相似文献   

14.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

15.
Feng  Zhaomin  Zhu  Wenfei  Yang  Lei  Liu  Jia  Zhou  Lijuan  Wang  Dayan  Shu  Yuelong 《中国病毒学》2021,36(1):43-51
Eurasian avian-like H1 N1(EA H1 N1) swine influenza virus(SIV) outside European countries was first detected in Hong Kong Special Administrative Region(Hong Kong, SAR) of China in 2001. Afterwards, EA H1 N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1 N1 SIVs in China are still unknown. Here, we collected the EA H1 N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1 N1 SIVs. Our results showed that EA H1 N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1 N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1 N1(A(H1 N1)pdm09), and triple reassortment H1 N2(TR H1 N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1 N1, A(H1 N1)pdm09 and TR H1 N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1 N1 SIVs. Our study has drawn a genotypic diversity image of EA H1 N1 viruses, and could help to evaluate the potential risk of EA H1 N1 for pandemic preparedness and response.  相似文献   

16.
2009年6月12日,江苏确诊首例甲型H1N1(2009)病例。通过细胞和鸡胚分离系统,我们分离到一株具有较高血凝活性的病毒,命名为A/Jiangsu/1/2009。为了跟踪病毒的变异情况,我们开展了病毒的全基因组测序工作,在此基础上对其血凝素基因(Haemagglutinin,HA)的遗传特性进行了详细研究。分离株HA蛋白不具有多碱基HA裂解位点,具有低致病性流感病毒特点。与参考株A/California/04/2009相比,分离株A/Jiangsu/1/2009HA蛋白的有4个氨基酸发生了突变,但都不在已知的抗原位点上。分离株有5个潜在糖基化位点,这与近年来古典猪H1N1和北美三源重配猪H1病毒完全一致,保留了古典猪H1的特点。与禽流感H1病毒相比,分离株HA蛋白受体结合位点上的E190D和G225D发生突变,这可能成为新甲型H1N1(2009)在人际间传播的一个重要分子基础。此外,其它受体结合位点上相关氨基酸同时具有人和猪流感病毒的特点。本研究首次对早期流行的甲型H1N1(2009)流感病毒的HA蛋白的分子遗传特征进行了详细研究,对进一步监测病原变异具有重要指导意义。  相似文献   

17.
Swine Influenza Virus (H1N1) is a known causative agent of swine flu. Transmission of Swine Influenza Virus form pig to human is not a common event and may not always cause human influenza. The 2009 outbreak by subtype H1N1 in humans is due to transfer of Swine Influenza Virus from pig to human. Thus to analyze the origin of this novel virus we compared two surface proteins (HA and NA) with influenza viruses of swine, avian and humans isolates recovered from 1918 to 2008 outbreaks. Phylogenetic analyses of hemagglutinin gene from 2009 pandemic found to be clustered with swine influenza virus (H1N2) circulated in U.S.A during the 1999-2004 outbreaks. Whereas, neuraminidase gene was clustered with H1N1 strains isolated from Europe and Asia during 1992-2007 outbreaks. This study concludes that the new H1N1 strain appeared in 2009 outbreak with high pathogenicity to human was originated as result of re-assortment (exchange of gene). Moreover, our data also suggest that the virus will remain sensitive to the pre-existing therapeutic strategies.  相似文献   

18.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

19.
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009–2010 and 2010–2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.  相似文献   

20.
Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01-2006/07 seasons. Among adults aged 48-64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05-2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号