首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nierth A  Jäschke A 《PloS one》2011,6(6):e21391
Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope (32)P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme-an RNA sequence that catalyzes the eponymous reaction. We used the (32)P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the (32)P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups.  相似文献   

2.
3.
Solvent free biotransformation of polyglycerol-3 and lauric acid yields polyglycerol-3-laurate and water. This conversion can be catalyzed by Novozym 435. However, the performance is limited by the viscosity of polyglycerol as well as of polyglycerol-3-laurate. A decrease of viscosity by increasing reaction temperature is only possible in a certain temperature range because of the limited stability of the applied enzyme. By dissolving high dense carbon dioxide into the reaction system the viscosity could be reduced, keeping the temperature at an acceptable level at the same time. Thus the reaction rate was increased by a factor of 4 while working at a pressure of 280 bar and 60°C.  相似文献   

4.
Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme‐catalyzed reactions generally include several parameters, which are strongly correlated with each other. State‐of‐the‐art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver‐Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches. The parameter estimation problem is decomposed into five hierarchical steps, where the solution of each of the steps becomes the input for the subsequent step to achieve the final model with the corresponding regressed parameters. The model is further used for validating its performance and determining the correlation of the parameters. The final model with the fitted parameters is able to describe both initial rate and dynamic experiments. Application of the methodology is illustrated with a case study using the ω‐transaminase catalyzed synthesis of 1‐phenylethylamine from acetophenone and 2‐propylamine. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

5.
Oecologia - Despite decades of scientific effort, there is still no consensus on the determinants of broad-scale gradients of animal diversity. We argue that general drivers of diversity are...  相似文献   

6.
Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries. AVAILABILITY: The database is available for free at http://www.actinobase.in.  相似文献   

7.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

8.
Genetic diversity and temperature increases associated with global climate change are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species’ thermal optimum (i.e., the temperature at which population growth is maximal, or T opt), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect weakens. We also show that a combination of changes in the amount of expressed genetic diversity (G) in r, plastic changes in population growth across temperatures (E), and strong G × E interactions underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.  相似文献   

9.
Li C  Zhou YJ  Wang N  Feng XW  Li K  Yu XQ 《Journal of biotechnology》2010,150(4):539-545
Several proteases, especially pepsin, were observed to directly catalyze asymmetric aldol reactions. Pepsin, which displays well-documented proteolytic activity under acidic conditions, exhibited distinct catalytic activity in a crossed aldol reaction between acetone and 4-nitrobenzaldehyde with high yield and moderate enantioselectivity. Fluorescence experiments indicated that under neutral pH conditions, pepsin maintains its native conformation and that the natural structure plays an important role in biocatalytic promiscuity. Moreover, no significant loss of enantioselectivity was found even after four cycles of catalyst recycling, showing the high stability of pepsin under the selected aqueous reaction conditions. This case of biocatalytic promiscuity not only expands the application of proteases to new chemical transformations, but also could be developed into a potentially valuable method for green organic synthesis.  相似文献   

10.
The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various redox enzymes nowadays has triggered the recent investigation of various oxidation-reduction cascades.  相似文献   

11.
It has been proposed that biodiversity can be important for ecosystem functioning and act as an insurance against perturbations and environmental fluctuations. To date, theoretical work supports this idea but direct experimental evidence is still to some extent ambiguous and debated. The main reason for this debate – and the lack of strong empirical support – is due to unavoidable experimentally and statistically inherent variance reduction effects. Here we present the results of an experimental study that circumvents earlier hidden treatments. By random draw without replacement, we collected 180 full-sibling batches of an amphipod from a large pool of possible parents. Assembled amphipod populations with diversity levels ranging from one to ten were exposed to either a single perturbation (nutrient enrichment) or two combined perturbations (nutrient enrichment and desiccation). The results show that the variance in the number of surviving individuals decreased with increasing diversity in the combined perturbations treatment. Predictability in population survival thus seemed to be higher in more diverse assemblages. Our results, together with a simple model suggest that variance-decreasing effects can be due to actual real world statistical sampling effects of increasing diversity.  相似文献   

12.
The benefits of applying biocatalysts to organic synthesis, such as their high chemo-, regio-, and enantio-specificity and selectivity, must be seriously considered, especially where chemical routes are unavailable, complex or prohibitively expensive. In cases where a potential biocatalytic route is not yet efficient enough to compete with chemical synthesis, directed evolution, and/or process engineering could be implemented for improvements. While directed evolution has demonstrated great potential to enhance enzyme properties, there will always be some aspects of biocatalytic processes that it does not address. Even where it can be successfully applied, the resources required for its implementation must currently be weighed against the feasibility of, and resources available for developing a chemical synthesis route. Here, we review the potential of combining directed evolution with process engineering, and recent developments to improve their implementation. Favourable targets for the directed evolution of new biocatalysts are the syntheses of highly complex molecules, especially where chemistry, metabolic engineering or recombineering provide a partial solution. We also review some of the recent advances in the application of these approaches alongside the directed evolution of biocatalysts.  相似文献   

13.
Enzyme engineering is a powerful tool to fine-tune the enzymes. It is a technique by which the stability, activity, and specificity of the enzymes can be altered. The characteristic properties of an enzyme can be amended by immobilization and protein engineering. Among them, protein engineering is the most promising, as in addition to amending the stability and activity, it is the only way to modulate the specificity and stereoselectivity of enzymes. The current review sheds light on protein engineering and the approaches applied for it on the basis of the degree of knowledge of structure and function of enzymes. Enzymes, which have been engineered are also discussed in detail and categorized on the basis of their respective applications. This will give a better insight into the revolutionary changes brought by protein engineering of enzymes in various industrial and environmental processes.  相似文献   

14.
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., L: -nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto-aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.  相似文献   

15.
石油生物催化脱硫的研究进展   总被引:5,自引:0,他引:5  
石油生物催化脱硫技术是新兴的极具潜力的石油非加氢脱硫技术,在降低轻质油品生产成本、提高油品质量和环境保护等方面显示出潜在的优势,被誉为21世纪的石油脱硫技术。本文主要对石油生物催化脱硫技术特点、各种降解路线和研究现状进行了综述,指出了石油生物催化脱硫技术存在的问题,并提出了进一步研究发展的方向。  相似文献   

16.
Summary A new class of bioselective membrane electrodes, in which leaf discs are combined with potentiometric gas sensors, is proposed and described. The principle is illustrated for a L-cysteine sensor, where cucumber leaves are employed as biocatalysts in conjunction with an NH3 gas sensing electrode. This novel arrangement offers possible advantages of simplicity and low cost owing to the structural integrity and good biocatalytic activity of plant leaves.  相似文献   

17.
Different approaches to improve the enantioselectivity of biocatalytic systems are presented. These methodologies have been successfully applied to the preparation of optically active dihydropyridine, calcium antagonists, and cis-3-hydroxy-6-acetoxy-cyclohex-1-ene, a valuable chiral building block for natural products synthesis. The phenomenon of enantioselective inhibition is described and several new heterocyclic amines have been shown to be effective enantioselective inhibitors in the Candida lipase system.  相似文献   

18.
Biodiversity is a major determinant of ecosystem functioning. Species-rich communities often use resources more efficiently thereby improving community performance. However, high competition within diverse communities may also reduce community functioning. We manipulated the genotypic diversity of Pseudomonas fluorescens communities, a plant mutualistic species inhibiting pathogens. We measured antagonistic interactions in vitro, and related these interactions to bacterial community productivity (root colonisation) and ecosystem service (host plant protection). Antagonistic interactions increased disproportionally with species richness. Mutual poisoning between competitors lead to a 'negative complementarity effect', causing a decrease in bacterial density by up to 98% in diverse communities and a complete loss of plant protection. The results emphasize that antagonistic interactions may determine community functioning and cause negative biodiversity-ecosystem functioning relationships. Interference competition may thus be an additional key for predicting the dynamics and performance of natural assemblages and needs to be implemented in future biodiversity models.  相似文献   

19.
Metabolic networks have been an interesting starting point not only for the design of synthetic routes in a similar sequence of reactions, e.g., in biomimetic syntheses, but also for assembling a number of biocatalytic steps by preparing the required enzymes and auxiliary reagents. Retrosynthetic analysis involving multiple biocatalytic reactions steps therefore needs to consider the practically realized biocatalytic single steps. The opportunities for route selection are enlarged if novel synthetic reactions connecting easily available starting materials and products are found, and/or both biocatalytic and classical reactions of organic chemistry are utilized. Tools and ingredients for biocatalytic synthesis are of special interest for reactions difficult to achieve by classical organic synthesis. Densely and differentially functionalized small molecules do not allow much space for protecting or activating groups. Biocatalytic reactions have therefore performed well for a number of useful metabolites in enantiopure form to achieve full functionality. Although many well-known metabolites from classical biochemistry have only been prepared in racemic form, it is of fundamental interest to have these available in enantiomerically pure form. Biocatalytic reactions with nature's privileged chiral catalysts appear to be a promising synthetic strategy towards these metabolites, especially when sensitive or stable-isotope-labeled metabolites are to be prepared. The main applications for these metabolites are as references materials in metabolomics, as enzyme substrates for the characterization of metabolic enzyme activities and as potential pharmaceuticals in biomedical research. The use of stable-isotope-labeled metabolites can thereby simplify in vivo applications and metabolic flux analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号