首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

2.
The distribution of substituents in hydroxypropylated potato amylopectin starch (amylose deficient) modified in a slurry of granular starch (HPPAPg) or in a polymer 'solution' of dissolved starch (HPPAPs), was investigated. The molar substitution (MS) was determined by three different methods: proton nuclear magnetic resonance (1H NMR) spectroscopy, gas-liquid chromatography (GLC) with mass spectrometry, and a colourimetric method. The MS values obtained by 1H NMR spectroscopy were higher than those obtained by GLC-mass spectrometry analysis and colourimetry. The relative ratio of 2-, 3-, and 6-substitution, as well as un-, mono-, and disubstitution in the anhydroglucose unit (AGU) were determined by GLC-mass spectrometry analysis. Results obtained showed no significant difference in molar distribution of hydroxypropyl groups in the AGU between the two derivatives. For analysis of the distribution pattern along the polymer chain, the starch derivatives were hydrolysed by enzymes with different selectivities. Debranching of the polymers indicated that more substituents were located in close vicinity to branching points in HPPAPg than in HPPAPs. Simultaneous alpha-amylase and amyloglucosidase hydrolysis of HPPAPg liberated more unsubstituted glucose units than the hydrolysis of HPPAPs, indicating a more heterogeneous distribution of substituents in HPPAPg.  相似文献   

3.
4.
Reductions in activity of SSIII, the major isoform of starch synthase responsible for amylopectin synthesis in the potato tuber, result in fissuring of the starch granules. To discover the causes of the fissuring, and thus to shed light on factors that influence starch granule morphology in general, SSIII antisense lines were compared with lines with reductions in the major granule-bound isoform of starch synthase (GBSS) and lines with reductions in activity of both SSIII and GBSS (SSIII/GBSS antisense lines). This revealed that fissuring resulted from the activity of GBSS in the SSIII antisense background. Control (untransformed) lines and GBSS and SSIII/GBSS antisense lines had unfissured granules. Starch analyses showed that granules from SSIII antisense tubers had a greater number of long glucan chains than did granules from the other lines, in the form of larger amylose molecules and a unique fraction of very long amylopectin chains. These are likely to result from increased flux through GBSS in SSIII antisense tubers, in response to the elevated content of ADP-glucose in these tubers. It is proposed that the long glucan chains disrupt organization of the semi-crystalline parts of the matrix, setting up stresses in the matrix that lead to fissuring.  相似文献   

5.
Osmotically permeabilized potato (Solanum tuberosum L.) tuber slices were used to study the biosynthesis of starch under semi in vivo conditions. Criteria to distinguish the various enzymes involved in starch biosynthesis were developed based on the characteristics of the enzymes in in vitro experiments. Branching enzyme activity was inhibited at pH 8.5 or higher, while the starch synthases functioned optimally between pH 8.8 and 9.1. Unprimed soluble starch synthase activity was only apparent in the presence of sodium citrate (0.4 molar or higher). Granulebound and primed soluble starch synthase were active in the absence of sodium citrate. Primed soluble starch synthase activity was susceptible to inhibition by 10 millimolar zinc sulfate, while granule-bound starch synthase activity was not. The incorporation of the Glc moiety of ADP-Glc into starch in tissue slices by the various starch synthases was consistent with in vitro data with respect to the affinity of the enzymes for substrate, the pH profile, the stimulation by citrate, and the inhibition by zinc sulfate. These data were used to determine the activity of each of the starch synthases in tissue slices: granule-bound and soluble starch synthase transferred 37 and 55 picomoles ADP-Glc per hour per milligram fresh weight into starch of permeabilized tissue slices at 30°C and pH 9.1. In the presence of 0.5 molar sodium citrate, at least 40 picomoles ADP-Glc per hour per milligram fresh weight as transferred into starch by unprimed soluble starch synthase activity.  相似文献   

6.
7.
8.
Mohabir G  John P 《Plant physiology》1988,88(4):1222-1228
A sharp temperature optimum is observed at 21.5°C when the incorporation of [14C]sucrose into starch is measured with discs cut from developing tubers of potato (Solanum tuberosum L. cv Desirée). By contrast, increasing temperatures over the range 9 to 31°C only enhance release of 14C to respiratory CO2 and incorporation of 14C into the ethanolsoluble fraction. By comparison, starch synthesis in discs from developing corms of cocoyam (Colocasia esculenta L. Schott) is increased by raising the temperature from 15 to 35°C. The significance of a relatively low temperature optimum for starch synthesis in potato is discussed in relation to the yield limitations imposed by continuously high soil temperatures. Amyloplasts isolated from protoplasts prepared from developing potato tubers contain activities of alkaline pyrophosphatase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphatase, and phosphoglucomutase in addition to ADP-glucose-pyrophosphorylase, starch phosphorylase and starch synthase. Cell-free amyloplasts released by thinly slicing developing potato tubers synthesize starch from [14C]triose-phosphate generated from [14C]fructose-1,6-bisphosphate in the reaction medium. This starch synthesis is inhibited by addition of 10 millimolar inorganic phosphate and requires amyloplast integrity, suggesting the operation of a triose-phosphate/inorganic phosphate exchange carrier at the amyloplast membrane. The temperature optimum at 21.5°C observed with tissue discs is not observed with amyloplasts.  相似文献   

9.
Sweetpotato amylopectin was subjected to partial hydrolysis by α-amylase from Bacillus amyloliquefaciens to release the clusters. Clusters were then fractionated and precipitated by methanol and structurally characterized by gel-permeation chromatography and high-performance anion-exchange chromatography. An initial stage of α-amylolysis on the amylopectin isolated mostly domains but also clusters. A second stage of α-amylolysis on the domains and clusters further isolated their respective clusters and sub-clusters. All the domains, clusters and sub-clusters were sequentially subjected to phosphorolysis and β-amylolysis to obtain their internal part. The degree of polymerization of the clusters in the form of φ,β-limit dextrins were from 58 to 86. Each domain contained 2–8 clusters. Two types of clusters were structurally identified. Type A clusters were larger and contained about 12 chains per cluster with higher degree of branching (DB), whereas those of type B were smaller and contained about eight chains per cluster with lower DB.  相似文献   

10.
The defatted starch was dispersed in NaOH (1 M) and neutralized with HCl (1 M). The amylose 1-butanol complex is adsorbed on defatted cellulose powder in the solvent system containing acetate buffer (pH 4.8,0.1 M) + urea (2 M) + 1-butanol (8.5%, v/v). The complex adsorbed on cellulose powder is separated by centrifugation (2418 g). The sediment is washed with the solvent system-I to obtain the intermediate fraction. The adsorbed amylose is eluted with urea (2 M) in acetate buffer (pH 4.8, 0.1 M). The amylose, intermediate fraction and amylopectin were precipitated with ethanol, washed free of urea and air dried. They were characterized by determining their blue value and beta -amylolysis limit.  相似文献   

11.
12.
Morphology, molecular structure, and thermal properties of potato starch granules with low to high phosphate content were studied as an effect of mild acid hydrolysis (lintnerization) to 80% solubilization at two temperatures (25 and 45°C). Light microscopy showed that the lintners contained apparently intact granules, which disintegrated into fragments upon dehydration. Transmission electron microscopy of rehydrated lintners revealed lacy networks of smaller subunits. The molecular composition of the lintners suggested that they largely consisted of remnants of crystalline lamellae. When lintnerization was performed at 45°C, the lintners contained more of branched dextrins compared to 25°C in both low and intermediate phosphate‐containing samples. High‐phosphate‐containing starch was, however, unaffected by temperature and this was probably due to an altered amylopectin structure rather than the phosphate content. After lintnerization, the melting endotherms were broad with decreased onset and increased peak melting temperatures. The relative crystallinity was lower in lintners prepared at 45°C. A hypothesis that combines the kinetics of lintnerization with the molecular and thermal characteristics of the lintners is presented. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 257–271, 2014.  相似文献   

13.
14.
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll‐specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP‐glucose pyrophosphorylase in leaves. Both approaches make use of re‐routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6‐phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a ‘pull’ approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of ‘pull’ and ‘push’ approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.  相似文献   

15.
16.
The action of some detergents on the incorporation of glucose from uridine diphosphate glucose or adenosine diphosphate glucose into the potato tuber starch grain was studied. It was found that the cationic detergent, cetyltrimethylammonium bromide, produces a rapid binding of both sugar nucleotides to the grain and a great increase in the incorporation of glucose into the polysaccharide. Kinetic constants of starch synthetase are also modified, there being an affinity increase for both sugar nucleotides. Neutral detergents are without effect and anionic detergents are inhibitors.  相似文献   

17.
The aim of this work was to evaluate the extent to which plastidial phosphoglucomutase (PGM) activity controls starch synthesis within potato (Solanum tuberosum L. cv. Desirée) tubers. The reduction in the activity of plastidial PGM led to both a correlative reduction in starch accumulation and an increased sucrose accumulation. The control coefficient of plastidial PGM on the accumulation of starch was estimated to approximate 0.24. The fluxes of carbohydrate metabolism were measured by investigating the metabolism of [U-14C]glucose in tuber discs from wild-type and transgenic plants. In tuber discs the control coefficient of plastidial PGM over starch synthesis was estimated as 0.36, indicating that this enzyme exerts considerable control over starch synthesis within the potato tuber.  相似文献   

18.
The hydrolysis of amylopectin potato starch with Bacillus licheniformis alpha-amylase (Maxamyl) was studied under industrially relevant conditions (i.e. high dry-weight concentrations). The following ranges of process conditions were chosen and investigated by means of an experimental design: pH [5.6-7.6]; calcium addition [0-120 microg/g]; temperature [63-97 degrees C]; dry-weight concentration [3-37% [w/w]]; enzyme dosage [27.6-372.4 microL/kg] and stirring [0-200 rpm]. The rate of hydrolysis was followed as a function of the theoretical dextrose equivalent. The highest rate (at a dextrose equivalent of 10) was observed at high temperature (90 degrees C) and low pH (6). At a higher pH (7.2), the maximum temperature of hydrolysis shifted to a lower value. Also, high levels of calcium resulted in a decrease of the maximum temperature of hydrolysis. The pH, temperature, and the amount of enzyme added showed interactive effects on the observed rate of hydrolysis. No product or substrate inhibition was observed. Stirring did not effect the rate of hydrolysis. The oligosaccharide composition after hydrolysis (at a certain dextrose equivalent) did depend on the reaction temperature. The level of maltopentaose [15-24% [w/w]], a major product of starch hydrolysis by B. licheniformis alpha-amylase, was influenced mostly by temperature.  相似文献   

19.
Zhu F  Corke H  Åman P  Bertoft E 《Carbohydrate research》2011,346(18):2913-2925
φ,β-Limit dextrins of domains and clusters of sweetpotato amylopectin were subjected to extensive hydrolysis by Bacillus amyloliquefaciens α-amylase to release building blocks and reveal the internal structures of clusters. The composition of building blocks was analyzed by size-fractionation, gel permeation chromatography, and high performance anion exchange chromatography. Different domains and clusters had structurally similar building blocks with around three chains per building block and internal chain length around 2.9. Singly branched and doubly branched building blocks were the largest and second largest groups in the clusters. Type A clusters had more large building blocks and contained 5–6 blocks per cluster with an inter-block chain length (IB-CL) of 7.0, whereas type B clusters had less large building blocks and contained 3–4 blocks per cluster with IB-CL 7.9. Models on how the building blocks could be organized into type A and type B clusters are discussed.  相似文献   

20.
Regulation of potato tuber sprouting   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号