首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real‐time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real‐time. Two heat parameters were considered in combination with sham‐ and 100 mT‐exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult. J. Cell. Biochem. 108: 956–962, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
In this study, we examined the effect of hydrogen peroxide on the accumulation of various mRNAs encoding heat shock proteins (hsps) and proto-oncogenes in Xenopus A6 kidney epithelial cells. Hydrogen peroxide treatment enhanced the accumulation of hsp90, hsp70, hsp30, c-jun, c-fos, and actin mRNAs with distinct temporal patterns. Although hsp70, c-fos, and c-jun mRNA levels peaked at 1-2 h before declining, hsp30 and hsp90 mRNA levels were maximal at 4-6 h. Other mRNAs, including heat shock cognate hsc70, immunoglobulin binding protein, and ribosomal L8, were unaffected. Treatment of kidney cells with a combination of mild heat shock plus hydrogen peroxide resulted in a synergistic increase in the relative levels of both hsp70 and hsp30 mRNA, but not hsp90, c-fos, c-jun, or actin. This study suggests that analysis of hsp and proto-oncogene mRNA levels may be of value as molecular biomarkers of oxidative stress associated with various disease states and nephrotoxicity in kidney.  相似文献   

3.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

4.
Studies were initiated to determine the extent to which reduced glutathione (GSH) may be involved in the capacity of cultured rat embryos to develop heat-induced tolerance to the deleterious effects of exposure to high temperatures (heat shock). Investigations of the modulation of dysmorphogenic responses of embryos to heat shock (43 degrees C, 30 min) as well as to the expression of the hsp70 gene and subsequent formation of hsps indicated that the acquisition of thermotolerance by rat embryos could be significantly influenced by the inhibition of GSH synthesis. Treatment of conceptuses with L-buthionine-S,R-sulfoximine (BSO) reduced intracellular GSH concentrations and compromised the capacity of embryos to mount a thermotolerance response as assessed by alterations in indices of growth and development. Embryonic thermotolerance elicited by preexposure to 42 degrees C for 30 min was accompanied by increases in GSH to levels greater than those measured in control embryos at 37 degrees C just prior to the subsequent 43 degrees C heat exposure. Expression of hsp70 mRNA was detectable soon after elevation of the temperature to 42 degrees C and reached its highest level of accumulation 1.5 hr after the 43 degrees C heat shock. BSO treatment had little if any effect on hsp70 message levels or on the synthesis of hsp70. The fact that BSO-treatment attenuated the thermotolerance response but did not produce a decrease in hsp70 RNA or the synthesis of hsp70 suggests that hsp70 alone is not sufficient to confer thermotolerance upon cultured rat embryos.  相似文献   

5.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cadmium is a highly toxic environmental pollutant that has been classified as a human carcinogen. Toxicological responses to cadmium exposure include respiratory diseases, neurological disorders and kidney damage. In the present study, we have characterized the effect of cadmium on the accumulation of the small heat shock protein (HSP), HSP30, in Xenopus laevis A6 kidney epithelial cells. Incubation of A6 cells with cadmium chloride induced the accumulation of HSP30 protein and hsp30 mRNA. While HSP70 protein and hsp70 mRNA accumulation were also induced, the relative levels of actin remained relatively unaffected. Elevated levels of HSP30 were detected in cells undergoing prolonged exposure of cells to cadmium chloride or in cells recovering from cadmium chloride treatment. Immunocytochemical analysis of cadmium chloride-treated A6 cells revealed HSP30 accumulation primarily in the cytoplasm in a punctate pattern supplemented with larger HSP30 staining structures. Also, HSP30 co-localized with the F-actin cytoskeleton at higher cadmium chloride concentrations. The combination of mild heat shock temperatures plus cadmium chloride concentrations employed in this study resulted in a synergistic accumulation of HSP30 protein and hsp30 mRNA. Finally, in contrast to heat shock, prior exposure of Xenopus A6 cells to cadmium chloride treatment, sufficient to induce the accumulation of HSPs, did not protect the cells against a subsequent thermal challenge.  相似文献   

7.
8.
9.
We have examined differences in the spatial and temporal regulation of stress-induced hsp47 and hsp70 gene expression following exposure of zebrafish embryos to heat shock or ethanol. Using Northern blot analysis, we found that levels of hsp47 and hsp70 mRNA were dramatically elevated during heat shock in 2-day-old embryos. In contrast, ethanol exposure resulted in strong upregulation of the hsp47 gene whereas hsp70 mRNA levels increased only slightly following the same treatment. Whole-mount in situ hybridization analysis revealed that hsp47 mRNA was expressed predominantly in precartilagenous cells, as well as several other connective tissue cell populations within the embryo following exposure to either stress. hsp70 mRNA displayed a very different cell-specific distribution. For example, neither stress induced hsp70 mRNA accumulation in precartilagenous cells. However, high levels of hsp70 mRNA were detectable in epithelial cells of the developing epidermis following exposure to heat shock, but not to ethanol. These cells did not express the hsp47 gene following exposure to either of these stresses. The results suggest the presence of different inducible regulatory mechanisms for these genes which operate in a cell- and stress-specific manner in zebrafish embryos. Dev. Genet. 21:123–133, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
11.
Exercise causes heat shock (muscle temperatures of up to 45 degrees C, core temperatures of up to 44 degrees C) and oxidative stress (generation of O2- and H2O2), and exercise training promotes mitochondrial biogenesis (2-3-fold increases in muscle mitochondria). The concentrations of at least 15 possible heat shock or oxidative stress proteins (including one with a molecular weight of 70 kDa) were increased, in skeletal muscle, heart, and liver, by exercise. Soleus, plantaris, and extensor digitorum longus (EDL) muscles exhibited differential protein synthetic responses ([3H]leucine incorporation) to heat shock and oxidative stress in vitro but five proteins (particularly a 70 kDa protein and a 106 kDa protein) were common to both stresses. HSP70 mRNA levels were next analyzed by Northern transfer, using a [32P]-labeled HSP70 cDNA probe. HSP70 mRNA levels were increased, in skeletal and cardiac muscle, by exercise and by both heat shock and oxidative stress. Skeletal muscle HSP70 mRNA levels peaked 30-60 min following exercise, and appeared to decline slowly towards control levels by 6 h postexercise. Two distinct HSP70 mRNA species were observed in cardiac muscle; a 2.3 kb mRNA which returned to control levels within 2-3 h postexercise, and a 3.5 kb mRNA species which remained at elevated concentrations for some 6 h postexercise. The induction of HSP70 appears to be a physiological response to the heat shock and oxidative stress of exercise. Exercise hyperthermia may actually cause oxidative stress since we also found that muscle mitochondria undergo progressive uncoupling and increased O2- generation with increasing temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
B. Tenuzzo 《Tissue & cell》2009,41(3):169-179
An increasing number of evidence indicates that static magnetic fields (SMFs) are capable of altering apoptosis, mainly through modulation of Ca2+ influx. Here we present data that suggest apoptotic-related gene expression as an alternative pathway, through which exposure to 6 milliTesla (mT) SMF can interfere with apoptosis. Exposure to 6 mT SMF affects the apoptotic rate (spontaneous and drug-induced) and [Ca2+]i in isolated human lymphocytes; the aged cells are more susceptible to exposure than fresh ones. The exposure to 6 mT exerted a protective effect on chemical or physical-induced apoptosis, irrespective of the age of the cells.The investigation of the gene expression of bcl-2, bax, p53 and hsp70 in freshly isolated and in culture-aged human lymphocytes indicates that these genes are modulated by SMF exposure in the experimental conditions used, in a gene-, age- and time-dependent manner. The exposure of isolated lymphocytes to SMF for up to 24 h modulated increased bax and p53 and decreased hsp70, and bcl-2. The amount of increment and/or decrement of the proteins varied for each gene examined and was independent of the apoptotic inducers. Finally, the same stress applied to freshly isolated or aged lymphocytes resulted in different modulation of bcl-2, bax and hsp70.  相似文献   

13.
To develop an alternative to hyperthermia for the induction of hsp70 for presurgical cytoprotection, we investigated the optimal exposure conditions for magnetic field induction of hsp70. Normal human breast cells (HTB124) were exposed to 60-Hz magnetic fields and hsp70 levels were measured following three different exposure conditions: continuous exposure up to 3 h, a single 20-min exposure, and a single 20-min exposure followed by repeated 20-min exposures at different field strengths. In cells exposed continuously for 3 h, hsp70 levels peaked (46%) within 20 min and returned to control levels by 2 h. Following a single 20-min exposure, the return of hsp70 levels to control values extended to more than 3 h. When cells underwent a 20-min exposure followed by repeated 20-min exposures (restimulation) with different field strengths, additional increases in hsp70 levels were induced: 31% at 1 h, 41% at 2 h, and 30% at 3 h. J. Cell. Biochem. 71:577–583, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos to resume normal growth and development than embryos from dams with inadequate selenium nutrition.  相似文献   

15.
In this study we have evaluated stress-inducible hsp90 mRNA accumulation as a potential molecular biomarker in Xenopus laevis. In order to obtain a probe for Northern blot analysis we employed a PCR-based approach using degenerate primers for the amplification and cloning of an hsp90 gene sequence from Xenopus laevis. The deduced amino acid sequence is 102 amino acids in length and exhibited the highest degree of identity with zebrafish and human hsp90 β genes. Futhermore, the putative intron and exon boundaries of this fragment are the same as hsp90 β in chicken, mouse and human, indicating that the fragment represents a Xenopus hsp90 β-like gene. Northern blot analyses revealed that this gene was constitutively expressed in cultured A6 cells. While heat shock and sodium arsenite exposure resulted in the increased accumulation of hsp90 mRNA in A6 cells, treatment with cadmium chloride and zinc chloride did not. Also, exposure of A6 cells to concurrent heat shock and sodium arsenite produced a mild synergistic response with respects to hsp90 mRNA levels in contrast to hsp70 mRNA levels which displayed a strong synergistic effect. Finally, hsp90 mRNA was detected consitutively throughout early embrogenesis but was heat-inducible only in late blastula and later stages of development. Given the normal abundance and limited stress-induced accumulation of hsp90 mRNA, it may not have a great deal of potential as a molecular biomarker compared to hsp70 and hsp30 mRNA. However, it may be useful in conjunction with other stress protein mRNAs to establish a set of biomarker profiles to characterize the cellular response to a stressful or toxic agent.  相似文献   

16.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

17.
18.
The major cell types in rabbit cerebellum which engage in the expression of a heat shock gene (hsp 70) after hyperthermia were identified. This required in situ hybridization on thin sections derived from plastic-embedded tissue. All classes of cerebellar neurons which were examined (Purkinje, granule, and stellate cells) responded by induction of hsp 70 mRNA within 1 hr after hyperthermia. Prominent induction of hsp 70 mRNA was also observed in oligodendroglia in the deep white matter.  相似文献   

19.
The effect of dietary selenium yeast, a source of organic selenium, on heat shock protein 70 (hsp70) responses, redox status, growth and feed utilization were evaluated either in enteropathogenic Escherichia coli-challenged (EPEC) or in heat-stressed (HS) male broiler chickens grown to 42 days of age. One day-old chicks in experiment 1 were challenged orally with EPEC (10(6) cfu/chicken on day 1 and boosted by water application on days 2, 3, and 4) and fed diets with or without selenium yeast. Body weight (BW), feed conversion ratio (FCR), and total mortality were determined at 42 days of age, and this was followed by collection of ileal tissue for the quantification of total glutathione (TGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and hsp70 in randomly selected chickens from each treatment. In experiment 2, male broiler chickens were fed diets with or without selenium yeast under a thermoneutral rearing condition. At four weeks of age, blood and hepatic tissue were collected from chickens maintained in the thermoneutral environment and from chickens subjected to HS (40 degrees C for 1 h) and analyzed for TGSH, GSH, GSSG, and hsp70. Selenium yeast improved BW, FCR, and decreased mortality in both control and EPEC-challenged chicks. Selenium yeast significantly attenuated hsp70 expression in EPEC-challenged chickens and in those subjected to HS. The EPEC challenge increased TGSH and GSSG levels and decreased GSH/GSSG ratio. However, GSSG level accumulated in chickens fed diets without selenium supplementation resulting in a lower GSH/GSSG ratio in the selenium yeast-fed group. Heat stress increased GSSG level and decreased GSH/GSSG ratio. Selenium yeast-fed groups maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio. The hsp70 response was significantly less in those chickens fed selenium yeast and challenged with either EPEC or HS than in those chickens given no supplemental selenium. The results of this study suggest that selenium yeast supplementation had imparted resistance to oxidative stress associated with enteric bacteria infection and to high temperature exposure. It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens.  相似文献   

20.
In situ hybridization studies were carried out to determine whether induction of hsp70 mRNA in various cellular layers of the rabbit cerebellum was due to hyperthermic effects of the psychotropic drug LSD. Results indicated that induction was not present when LSD-induced hyperthermia was blocked. The pattern of induction of hsp70 mRNA in various cell types of the cerebellum was similar when hyperthermia was induced by either drug (LSD) or nondrug means (placement of animals in a warm incubator). A time course analysis of the induction of hsp70 mRNA following LSD-induced hyperthermia revealed maximal levels of mRNA at 1 hr in all cerebellar cell layers except the Purkinje layer where highest levels were attained at 5 hr. By 10 hr hsp70 mRNA had returned to constitutive levels in all cellular layers of the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号