首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteomics research infrastructures and core facilities within the Core for Life alliance advocate for community policies for quality control to ensure high standards in proteomics services.

Core facilities and research infrastructures have become an essential part of the scientific ecosystem. In the field of proteomics, national and international networks and research platforms have been established during the past decade that are supposed to set standards for high‐quality services, promote an exchange of professional information, and enable access to cutting‐edge, specialized proteomics technologies. Either centralized or distributed, these national and international proteomics infrastructures and technology platforms are generating massive amounts of data for the research community, and support a broad range of translational, computational and multi‐omics initiatives and basic research projects.By delegating part of their work to these services, researchers expect that the core facility adjusts their analytical protocols appropriately for their project to acquire data conforming best research practice of the scientific community. The implementation of quality assessment measures and commonly accepted quality controls in data generation is therefore crucially important for proteomics research infrastructures and the scientists who rely on them.However, current quality control and quality assessment procedures in proteomics core facilities and research infrastructures are a motley collection of protocols, standards, reference compounds and software tools. Proteomics relies on a customized multi‐step workflow typically consisting of sample preparation, data acquisition and data processing, and the implementation of each step differs among facilities. For example, sample preparation involves enzymatic digestion of the proteins, which can be performed in‐solution, in‐gel, or on‐beads, with often different proteolytic enzymes, chemicals, and conditions among laboratories. Data acquisition protocols are often customized to the particular instrument set up, and the acquired spectra and chromatograms are processed by different software tools provided by equipment vendors, third parties or developed in‐house.
…current quality control and quality assessment procedures in proteomics core facilities and research infrastructures are a motley collection of protocols, standards, reference compounds and software tools.
Moreover, core facilities implement their own guidelines to monitor the performance and quality of the entire workflow, typically utilizing different commercially available standards such as pre‐digested cell lysates, recombinant proteins, protein mixtures, or isotopically labeled peptides. Currently, there is no clear consensus on if, when and how to perform quality control checks. There is even less quality control in walk‐in facilities, where the staff is only responsible for correct usage of the instruments and users select and execute the analytical workflow themselves. It is not surprising therefore that instrument stability and robustness of the applied analytical approach are often unclear, which compromises analytical rigor.  相似文献   

2.
Core facilities represent increasingly important operational and strategic components of institutions'' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which they operate. This framework is intended to assist in guiding core facility management discussions in the context of a portfolio of facilities and within the overall institutional research enterprise.  相似文献   

3.
DNA sequencing core facilities serve as centralized resources within both academic and commercial institutions, providing expertise in the area of DNA analysis. The composition and configuration of these facilities continue to evolve in response to new developments in instrumentation and methodology. The goal of the 2003 DNA Sequencing Research Group (DSRG) survey was to identify recent changes in staffing, funding, instrumentation, services, and customer relations. Responses to 58 survey questions from 30 participants are presented to offer a look at the current typical DNA core sequencing facility. The results from this study will serve as a resource for institutions to benchmark their shared core laboratories, and to give facility directors an opportunity to compare and contrast their respective services and experiences.  相似文献   

4.
SUMMARY: The large amount of data produced by proteomics experiments requires effective bioinformatics tools for the integration of data management and data analysis. Here we introduce a suite of tools developed at Vanderbilt University to support production proteomics. We present the Backup Utility Service tool for automated instrument file backup and the ScanSifter tool for data conversion. We also describe a queuing system to coordinate identification pipelines and the File Collector tool for batch copying analytical results. These tools are individually useful but collectively reinforce each other. They are particularly valuable for proteomics core facilities or research institutions that need to manage multiple mass spectrometers. With minor changes, they could support other types of biomolecular resource facilities.  相似文献   

5.
Normalized spectral index quantification was recently presented as an accurate method of label‐free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance. We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP). We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium‐complexity sample. In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre‐fractionation produces accurate results at amounts above 1 fmol on column. We compare quantitation performance to various precursor intensity‐ and identification‐based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC‐MS. We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows. SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open‐source license.  相似文献   

6.
Neutron capture therapy (NCT) research encompasses a wide range of preclinical and clinical studies needed to develop this promising but complex cancer treatment. Many specialized facilities and capabilities including thermal and epithermal neutron irradiation facilities, boron analysis, specialized mixed-field dosimetry, animal care facilities and protocols, cell culture laboratories, and, for human clinical studies, licenses and review board approvals are required for NCT research. Such infrastructure is essential, but much of it is not readily available within the community. This is especially true for neutron irradiation facilities, which often require significant development and capital investment too expensive to duplicate at each site performing NCT research. To meet this need, the NCT group at the Massachusetts Institute of Technology (MIT) has established a User Center for NCT researchers that is already being accessed successfully by various groups. This paper describes the facilities, capabilities and other resources available at MIT and how the NCT research community can access them.  相似文献   

7.
Resource (core) facilities have played an ever-increasing role in furnishing the scientific community with specialized instrumentation and expertise for proteomics experiments in a cost-effective manner. The Proteomics Research Group (PRG) of the Association of Biomolecular Resource Facilities (ABRF) has sponsored a number of research studies designed to enable participants to try new techniques and assess their capabilities relative to other laboratories analyzing the same samples. Presented here are results from three PRG studies representing different samples that are typically analyzed in a core facility, ranging from simple protein identification to targeted analyses, and include intentional challenges to reflect realistic studies. The PRG2008 study compares different strategies for the qualitative characterization of proteins, particularly the utility of complementary methods for characterizing truncated protein forms. The use of different approaches for determining quantitative differences for several target proteins in human plasma was the focus of the PRG2009 study. The PRG2010 study explored different methods for determining specific constituents while identifying unforeseen problems that could account for unanticipated results associated with the different samples, and included (15) N-labeled proteins as an additional challenge. These studies provide a valuable educational resource to research laboratories and core facilities, as well as a mechanism for establishing good laboratory practices.  相似文献   

8.
State-of-the-art biomolecular core facilities: a comprehensive survey   总被引:2,自引:0,他引:2  
A survey of 124 protein and/or nucleic acid chemistry facilities has provided a basis for estimating the resources needed to establish a facility, the financial support needed to keep it operating, and the technical capabilities it might reasonably be expected to achieve. Based on these data, an average core facility occupied 870 ft2, was staffed by three full-time personnel, and was equipped with 4-5 major instrument systems. Because user fees generated an average of about $101,000/year in income compared with an average operating budget of about $197,000/year, even a facility that charged user fees would, on average, still require an annual subsidy of about $96,000. Although most government and industrial core facilities did not assess user fees, at least 83 of the 124 respondents did have a preestablished schedule of service charges that enabled a compilation to be made of the average cost of providing a number of typical facility analyses and syntheses. The greater than 100-fold range in charges assessed in core facilities for seemingly identical services was shown to result from the equally large range in the degree of subsidization of these laboratories. Although an average facility might be expected to offer four or five of the following six major services--amino acid sequencing, amino acid analysis, HPLC peptide isolation, peptide synthesis, fragmentation of proteins and DNA synthesis--less than 10% of the responding laboratories provided mass spectrometry, capillary zone electrophoresis, or RNA synthesis. With the exception of peptide synthesis, which had an average turn-around time of about 24 days, all other major services had turn-around times that averaged in the range of 4-9 days. Additional data are summarized regarding average sample throughput in core laboratories and the amount of protein that is needed for hydrolysis/amino acid analysis and sequencing.  相似文献   

9.
The Biologische Anstalt Helgoland (BAH) offers unique possibilities for research and education in marine sciences in the southern part of the North Sea. Besides its own research duties, the Institute provides research facilities and technical assistance for guest scientists, assists in the teaching and education of university student groups, and conducts its own courses. The Institute further supplies universities and research institutions on the mainland with marine organisms. The marine station on Helgoland has 14 laboratories, with a total of 32 working places available for guest scientists. The Wadden Sea Institute in List on the island of Sylt offers 6 laboratories with a total of 18 working places. Furthermore, laboratory classrooms are located on Helgoland and in List for 50 and 20 participants, respectively. For the convenience of the guest researchers staying at the BAH, guest-houses are run on Helgoland (Arthur-Hagmeier-Haus, Wilhelm-Mielk-Haus) und in List (Adolf-Bückmann-Haus). Guest researchers have been welcome since the founding of the Institute in 1892. Heincke gave a brief report on the activities of the first visitors from 1892 to 1897. Only sporadic reports are available for the first 60 years of this century. Guest scientists and their activities have only been recorded in detail in the annual reports of the BAH since 1962. The number of researchers and the length of their visits have increased continuously since 1962. The research facilities on Helgoland, in List and Hamburg have been modernized during the last 20 years. In 1971, four modern laboratories for guest researchers could be opened on Helgoland with financial support of the German Research Foundation (DFG). The number, of guest researchers in List and Hamburg increased after the completion of new buildings in 1979 and 1982. The recent increase in research activities by guest scientists is due to numerous students, from many different universities, using the superb research facilities to do their Masters thesis, or Ph.D. Guest researchers and students either perform their own research or cooperate with scientists of the BAH.  相似文献   

10.
11.
The generation of transgenic mice by microinjection of DNA into the pronuclei of fertilized oocytes was described in the early 1980s. A number of parameters affecting the efficiency of the technique were soon identified, including the type of DNA construct, the concentration of DNA being injected, and, most importantly, the strain of mice used for oocyte donors. Since then, hundreds of laboratories and transgenic core facilities across the world have successfully used this technique, essentially as originally described, to create thousands of new transgenic mouse lines. However, the overall procedure continues to be relatively inefficient, in terms of the number of fertilized oocytes required to produce a transgenic mouse, and variations in yields from day to day and construct to construct can be large. Consequently, core facilities often struggle to explain to their customers why a sufficient number of transgenic founders were not produced from a given construct. We believe the field (and individual facilities) would benefit from a rigorous assessment of average yields and expected variations in yields. To this end, we have initiated a survey from the International Society for Transgenic Technologies (ISTT) web site (), to obtain raw microinjection data from as many facilities as possible. We intend to use this data to establish performance standards for the field. Existing facilities will be able to refer to these standards in dealing with dissatisfied clients, and new facilities will be able to aim for an achievable goal. We may even be able to discover an optimum combination of factors that will allow every facility to achieve higher yields.  相似文献   

12.
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.  相似文献   

13.
Accreditation of nonhuman animal research facilities by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) is widely considered the “gold standard” of commitment to the well being of nonhuman animals used in research. AAALAC-accredited facilities receive preferential treatment from funding agencies and are viewed favorably by the general public. Thus, it bears investigating how well these facilities comply with U.S. animal research regulations. In this study, the incidences of noncompliance with the Animal Welfare Act (AWA) at AAALAC-accredited facilities were evaluated and compared to those at nonaccredited institutions during a period of 2 years. The analysis revealed that AAALAC-accredited facilities were frequently cited for AWA noncompliance items (NCIs). Controlling for the number of animals at each facility, AAALAC-accredited sites had significantly more AWA NCIs on average compared with nonaccredited sites. AAALAC-accredited sites also had more NCIs related to improper veterinary care, personnel qualifications, and animal husbandry. These results demonstrate that AAALAC accreditation does not improve compliance with regulations governing the treatment of animals in laboratories.  相似文献   

14.
In order to engage their students in a core methodology of the new genomics era, an ever-increasing number of faculty at primarily undergraduate institutions are gaining access to microarray technology. Their students are conducting successful microarray experiments designed to address a variety of interesting questions. A next step in these teaching and research laboratory projects is often validation of the microarray data for individual selected genes. In the research community, this usually involves the use of real-time polymerase chain reaction (PCR), a technology that requires instrumentation and reagents that are prohibitively expensive for most undergraduate institutions. The results of a survey of faculty teaching undergraduates in classroom and research settings indicate a clear need for an alternative approach. We sought to develop an inexpensive and student-friendly gel electrophoresis-based PCR method for quantifying messenger RNA (mRNA) levels using undergraduate researchers as models for students in teaching and research laboratories. We compared the results for three selected genes measured by microarray analysis, real-time PCR, and the gel electrophoresis-based method. The data support the use of the gel electrophoresis-based method as an inexpensive, convenient, yet reliable alternative for quantifying mRNA levels in undergraduate laboratories.  相似文献   

15.
Over the past few years, technological advances in automated DNA sequencing have had a profound effect on the nature of DNA sequencing laboratories. To characterize the changes occurring within DNA sequencing facilities, the DNA Sequencing Research Group conducted three previous studies, in 1998, 2000, and 2003. A new general survey has been designed and conducted by the DSRG to capture the current status of DNA sequencing facilities in all sectors. Included were questions regarding facility administration, pricing, instrumentation, technology, protocols, and operation. The results of the survey are presented here, accompanied by comparisons to the previous surveys. These comparisons formed a basis for the discussion of trends within the facilities in response to the dynamics of a changing technology.  相似文献   

16.
Biological Containment Facility for Studying Infectious Disease   总被引:3,自引:0,他引:3       下载免费PDF全文
To effectively characterize newly recognized viruses (Marburg, Lassa, etc.) and to study other highly virulent infections for which no effective prophylaxis or therapy exists, special containment facilities must be utilized and conventional techniques modified to minimize risk to laboratory personnel. This paper describes a laboratory suite for such studies, contained within a larger research facility; two separate biological safety cabinet systems, animal rooms support laboratories, change room facilities, shower, air lock, and other safety features are contained in the area. Details of design, construction, airflows, and equipment are described in addition to a discussion of operation, techniques, and modification of laboratory equipment utilized in actual studies.  相似文献   

17.
Web-based telemicroscopy   总被引:2,自引:0,他引:2  
By taking advantage of network-based computing and the recent developments in Web interfaces, centralized research facilities housing specialized and unique imaging instruments along with associated high-performance computing can be made available to researchers for use from their own laboratories. In addition to increasing access and utilization of these facilities, operation over the Internet is expected to enhance research by facilitating collaboration between researchers. We describe the implementation of a platform-independent Web-based system written in Java that supplements automated functions with video-guided interactive, collaborative remote control and data acquisition from an intermediate-high-voltage electron microscope.  相似文献   

18.
The Spanish National Network of Proteomic Facilities--ProteoRed has been created as an initiative for the coordination, integration and development of the proteomics facilities and laboratories distributed throughout Spain. ProteoRed's main objective is to give support to the scientific community allowing them wide access to emerging proteomics technologies and thus encouraging the science of proteomics. In addition, standardization of protocols and robustness of workflows are addressed by multi-centric laboratory activities. Educational, training and dissemination issues are part of the core activities of ProteoRed. To reach these objectives, specific activities have been developed through six working groups (WG1-WG6) covering functional, technical, educational and scientific aspects of proteomics.  相似文献   

19.
Bridging the gap     
《MABS-AUSTIN》2013,5(5):440-452
Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.  相似文献   

20.
Microarrays: handling the deluge of data and extracting reliable information   总被引:13,自引:0,他引:13  
Application of powerful, high-throughput genomics technologies is becoming more common and these technologies are evolving at a rapid pace. Genomics facilities are being established in major research institutions to produce inexpensive, customized cDNA microarrays that are accessible to researchers in a broad range of fields. These high-throughput platforms have generated a massive onslaught of data, which threatens to overwhelm researchers. Although microarrays show great promise, the technology has not matured to the point of consistently generating robust and reliable data when used in the average laboratory. This article addresses several aspects related to the handling of the deluge of microarray data and extracting reliable information from these data. We review the essential elements of data acquisition, data processing and data analysis, and briefly discuss issues related to the quality, validation and storage of data. Our goal is to point out some of the problems that must be overcome before this promising technology can achieve its full potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号