首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young (60--80 days) mice of the low beta-glucuronidase strain, C3H/HeJ, showed no differences in hepatic levels of glycosaminoglycans (GAGs) when compared to the randombred, "normal" Swiss-Webster mice of the same age. However, by 12 months of age hepatic GAG is nearly twice as high in C3H/HeJ mice as in Swiss-Webster mice. Studies of beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-glucosaminidase in four tissues of the two types of mice at the two ages revealed that glucuronidase was the only enzyme with lower activity in the C3H/HeJ strain.  相似文献   

2.
3.
The critical role of Langerhans cells (LC) in contact hypersensitivity (CHS) was recently questioned in studies using different LC-depletion mouse models. On one hand, inducible ablation of LC led to diminished ear swelling, suggesting functional redundancy between LC and (Langerin(+)) dermal dendritic cells (DC). On the other hand, constitutive or acute depletion of LC resulted in an enhanced reaction, supporting a regulatory role of LC in CHS. To address this controversy by conditional gene targeting, we generated Langerin-Cre knockin mice. Breeding these mice to a Cre-reporter strain demonstrated robust and specific DNA recombination in LC, as well as other Langerin(+) tissue DC. In agreement with the vital requirement of TGF-β signaling for LC development, crossing Langerin-Cre to mice homozygous for a loxP-flanked TGF-βR1 allele resulted in permanent LC deficiency, whereas the homeostasis of dermal Langerin(+) DC was unaffected. In the absence of LC, induction of CHS in these Langerin(+) DC-specific TGF-βR1-deficient mice elicited decreased ear swelling compared with controls. This novel approach provided further evidence against a regulatory function of LC in CHS. Moreover, these Langerin-Cre mice represent a unique and powerful tool to dissect the role and molecular control of Langerin(+) DC populations beyond LC.  相似文献   

4.
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-13C]glutamine or [3-13C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and 13C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-13C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.  相似文献   

5.
Rag2−/− γC−/− mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4+ T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1JRCSF for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.Animal models of HIV-1 infection are important tools for studying transmission, replication, and pathogenesis, as well as therapeutic intervention, of HIV-1 infection. Nonhuman primates such as rhesus macaques, infected with simian or chimeric simian/human immunodeficiency viruses (SIV or SHIV, respectively), represent well-characterized and highly relevant models; however, key limitations include expense, genetic variability of the host animals, and the fact that SIV, while closely related, is distinct from HIV-1. Therefore, small animal models that support HIV-1 infection and recapitulate many aspects of the human infection have been sought using several approaches.Recent approaches have involved the use of genetically immunodeficient mice that have been reconstituted using human-derived hematopoietic stem cells (HSC) (known as humanized mice). Several models have been developed based on this approach, including Rag2−/− γC−/− (DKO) and NOD/SCID/γC−/− (NOG or NSG) mice transplanted with human HSC (DKO-hu-HSC or NOG-hu-HSC mice) (40, 92) and the NOD/SCID mouse with transplanted human fetal thymus and liver tissue in addition to HSC (62). These models all support HIV-1 infection (1, 3, 6, 30, 87, 96, 102; for a review of these models, see the work of Denton and Garcia [22]). The DKO-hu-HSC mouse lacks both recombination activating gene 2 (Rag2) and the cytokine receptor common gamma chain (γC), and as a result, it does not generate murine T, B, and natural killer (NK) cells but supports engraftment of HSC and differentiation of human myeloid and lymphoid lineages. Immune reconstitution in this model likely involves education of human T cells in the mouse thymus and dissemination of differentiated human lymphoid subsets into the peripheral blood and to multiple lymphoid tissues, including lymph nodes, spleen, and bone marrow (92). The DKO-hu-HSC mouse, along with the other humanized mouse models, has been used in studies of transmission (5, 21), pathogenesis (43), and viral inhibition (16, 21, 53, 88, 94).One important feature of HIV-1 infection is the diversification and evolution of the viral genome over the course of infection. Diversification occurs most prominently in the envelope (env) gene, which encodes the viral surface glycoprotein (Env). Env mediates viral entry into cells through attachment to the primary receptor CD4, which primes Env for engagement with a coreceptor, either CCR5 or CXCR4, triggering virion fusion with the cellular plasma membrane (54). HIV-1 infection is typically established by one or a few CCR5-tropic (R5) variants that give rise to an initially homogenous viral population, which then diversifies over the course of chronic infection (45, 84). Diversification of Env results from immune selective pressures (27), isolation in or adaptation to different cellular and anatomical compartments (20, 28, 33, 46, 51), and selection for altered CD4 affinity (72, 90, 95) and coreceptor tropism (26, 39). In many cases, during late-stage infection, variants emerge from the R5 virus population that are CXCR4 tropic (X4), an event that is often associated with accelerated CD4 T-cell loss and progression to AIDS (9, 18, 89). In an effort to determine if any of these aspects of HIV-1 evolution are exhibited in the humanized mouse model, we examined the extent of HIV-1 diversification and the types of evolutionary changes that occur in env in mice infected with CCR5-tropic HIV-1 for up to 44 weeks.Sampling of viral env variants from the peripheral blood plasma over the course of the infection revealed increasing diversity and divergence of the viral population at rates similar to those observed in natural infection. Mutations were identified that affected Env conformation and sensitivity to neutralizing antibodies, CXCR4 coreceptor use, and potential N-linked glycosylation sites. Other mutations potentially affecting the Env phenotype were identified in CD4 binding sites and CD4-induced epitopes. The patterns of substitutions indicated that certain sites were under selection, particularly in cases where the same substitution was identified in multiple mice.This study demonstrates the potential for studying HIV-1 evolution in the DKO-hu-HSC mouse model and also gives insight into the types of selective pressures driving HIV-1 env evolution in this host environment. These findings, while highlighting some of the limitations of this model, will help to inform its appropriate use for studying different aspects of HIV-1 infection, such as the evolutionary constraints placed on HIV-1 during natural infection and in the face of pharmacological and immunological inhibition.  相似文献   

6.
The objective of this work was to identify strain-specific characteristics from real-time measurements of circadian rhythms of two inbred mouse strains. In particular, heart rate, temperature, and activity data collected from A/J and C57BL/6J (B6) mice using telemetry are analyzed. The influence of activity on heart rate and temperature is minimized by correlation analysis followed by regression analysis. The correlation analysis is used to determine the length of the activity data filter that results in the best correlation between activity data and heart rate or temperature. After the activity data are filtered, they are used in regression analysis. The temperature and heart rate rhythms obtained as the intercepts of the regression analysis are interpreted as the zero-activity rhythms and consequently are good estimates of the circadian rhythms. The circadian temperature rhythms for the B6 mice follow a smoother cosine-like time waveform, whereas those for the A/J mice follow a more square-wave-like waveform. To quantify the difference between these two temperature rhythms, a feature based on Fourier analysis of the time-series data is used. Detrended fluctuation analysis is used to identify features in the heart rate rhythms. The results of this work show that the features for the circadian temperature and heart rate rhythms can be used as distinguishing characteristics of the A/J and B6 strains. This work provides the foundation for future studies directed at investigating the influence of chromosomal substitutions on the regulation of circadian rhythms in these two strains.  相似文献   

7.
NMR chemical shift changes of the cyclomaltoheptaose (β-cyclodextrin, β-CD) cavity protons as well as roxatidine acetate hydrochloride aromatic ring protons revealed the formation of a RAH–β-CD inclusion complex. Detailed FTIR and NMR spectroscopic (1H NMR, COSY, NOESY, ROESY) studies have been done. The stoichiometry of the complex was determined to be 1:1, and the overall binding constant was also determined by Scott’s method. The NOESY spectrum confirmed the selective penetration of the aromatic ring of RAH into the β-CD cavity in comparison to that of the piperidine ring. The mode of penetration of the guest into the CD cavity and structure of the complex has been established.  相似文献   

8.
Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with β-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of β-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis. Here we addressed this question by using Lrat?/-Rbp?/? (vitamin A deficient) mice deprived of dietary preformed vitamin A and supplemented with β-carotene as the sole source of the vitamin, alongside with WT (vitamin A sufficient) mice. We found that dietary β-carotene impacted intestinal vitamin A status, barrier integrity and inflammation in both WT and Lrat?/-Rbp?/? (vitamin A deficient) mice on the vitamin A-free diet. However, it did so to a greater extent under overt VAD. Dietary β-carotene also modified the taxonomic profile of the fecal microbiome, but only under VAD. Given the similarity of the VAD-associated intestinal phenotypes with those of several other disorders of the gut, collectively known as Inflammatory Bowel Disease (IBD) Syndrome, these findings are broadly relevant to the effort of developing diet-based intervention strategies to ameliorate intestinal pathological conditions.  相似文献   

9.
The Bacillus thuringiensis ??-endotoxin and cowpea trypsin inhibitor genes have been introduced into the rice genome to improve its pest resistance via Agrobacterium-mediated transformation. A gas chromatography-mass spectrometry (GC?CMS) based metabolic profiling method was employed to determine the unpredictable metabolic changes resulting from the gene insertion and tissue culture separately. Descendants of the same transformant were obtained from different breeding programs, including both the transgenic and null-segregant progeny. The comparison of the transgenic and respective null-segregant plants enabled the evaluation of variations caused by transgenes; also the null-segregant plants were compared with the wild-type control to identify the influence of tissue culture. Based on the GC?CMS metabolic profiles, the principal component analysis and significant differences determined by Student??s t-test suggested that there were more metabolic changes from the tissue culture than those from the insertion of the transgenes. By comparing different breeding programs, it was clear that the progeny which was developed after several generations of backcross with the non-transformed rice as the recurrent parent, displayed fewer metabolic differences from the non-transformed parent. A GC?CMS based metabolic profiling study confirmed that backcrossing can help to reduce unwanted variations that occur during transformation processes.  相似文献   

10.
Glycogen storage disease type 1a (GSD-1a) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α), and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs). A globally G6Pase-α-deficient (G6pc−/−) mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/−) mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC). In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.KEY WORDS: Glycogen storage disease type 1a, Glucose-6-phosphatase-α, Animal model, Hepatomegaly, Hepatic steatosis, Hepatocellular adenoma, Hepatocellular carcinoma  相似文献   

11.
The formation of a complex between 1,6-anhydro-β-maltose and potassium ions was characterized using 1H, 13C and 39K NMR spectroscopy and single-crystal X-ray crystallography. In the NMR study, the spin-lattice relaxation times (T1) of C1, C3, C5, C6, and C5′ significantly decreased in the presence of potassium ions, and 39K-T1 also decreased in the presence of 1,6-anhydro-β-maltose, indicating complex formation. In a crystal, both 8- and 9-coordination structures, corresponding to the distorted capped pentagonal bipyramidal structure and the capped hexagonal bipyramidal structure, respectively, were identified. A potassium ion was positioned in the center of each bipyramidal structure.  相似文献   

12.
13.
14.
Brown and beige adipocytes dissipate energy as heat. Thus, the activation of brown adipocytes and the emergence of beige adipocytes in white adipose tissue (WAT) are suggested to be useful for preventing and treating obesity. Although β3-adrenergic receptor activation is known to stimulate lipolysis and activation of brown and beige adipocytes, fat depot–dependent changes in metabolite concentrations are not fully elucidated. The current study examined the effect of treatment with CL-316,243, a β3-adrenergic receptor agonist, on the relative abundance of metabolites in interscapular brown adipose tissue (iBAT), inguinal WAT (ingWAT), and epididymal WAT (epiWAT). Intraperitoneal injection of CL-316,243 (1 mg/kg) for 3 consecutive days increased the relative abundance of several glycolysis-related metabolites in all examined fat depots. The cellular concentrations of metabolites involved in the citric acid cycle and of free amino acids were also increased in epiWAT by CL-316,243. CL-316,243 increased the expression levels of several enzymes and transporters related to glucose metabolism and amino acid catabolism in ingWAT and iBAT but not in epiWAT. CL-316,243 also induced the emergence of more beige adipocytes in ingWAT than in epiWAT. Furthermore, adipocytes surrounded by macrophages were detected in the epiWAT of mice given CL-316,243. The current study reveals the fat depot–dependent modulation of cellular metabolites in CL-316,243-treated mice, presumably resulting from differential regulation of cell metabolism in different cell populations.  相似文献   

15.
16.
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E−/− (apoE−/−) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE−/− mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE−/− mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE−/− mice.  相似文献   

17.
This study aims to investigate the metabolic difference between male and female healthy adults using a combination of GC–MS and NMR metabolomics techniques. While metabolomics has shown wide applications in characterizing the status and progression of many diseases, physiological factors such as gender often contribute high levels of variability that can hinder the detection of biomarkers of interest, such as in disease detection. We carried out a detailed exploration of gender related metabolic profiling of human urine using a Headspace-SPME/GC–MS approach and detected over two hundred peaks. Fifty-nine metabolites were identified using the NIST library. 1H NMR spectroscopy was also utilized, and resulted in the identification of eighteen metabolites. We find that both GC–MS and NMR are able to capture human gender metabolic differences, and their combination allows a significantly better understanding of this difference. Subtle differences between genders are found to be related to the metabolism of fats, amino acids, and TCA cycle intermediates.  相似文献   

18.
Summary 2D 1H NMR spectroscopy of two -helical peptides which differ in their amphipathicity has been used to investigate the relationships between amide-proton chemical shifts, amide-proton exchange rates, temperature, and trifluoroethanol (TFE) concentration. In 50% TFE, in which the peptides are maximally helical, the amide-proton chemical shift and temperature coefficient patterns are very similar to each other in each peptide. Temperature coefficients from –10 to –6 ppb/K, usually indicative of the lack of intramolecular hydrogen bonds, were observed even for hydrophobic amino acids in the center of the -helices. However, slow hydrogen isotope exchange for residues from 4 to 16 in both 18-mer helices indicates intact intramolecular hydrogen bonds over most of the length of these peptides. Based on these anomalous observations, we suggest that the pattern of amide-proton shifts in -helices in H2O/TFE solvents is dominated by bifurcated intermolecular hydrogen-bond formation between the backbone carbonyl groups and TFE. The amide-proton chemical shift changes with increasing temperature may be interpreted by a disruption of intermolecular hydrogen bonds between carbonyl groups and the TFE in TFE/water rather than by the length of intramolecular hydrogen bonds in -helices. Supplementary Material is available upon request, comprising seven pages with listings of experimental details and the NMR shift data for the two peptides.  相似文献   

19.
To test the proposition that a histidine residue is essential in the catalytic mechanism of glutathione S-transferase, rat liver isoenzyme 3-3 specifically labeled with [ring-2-13C]histidine was prepared. The 13C NMR spectrum of the labeled enzyme revealed four resonances corresponding to the 4 histidine residues in the mu gene class type 3 subunit. Titration of the four resonances in the range of pH 4-9 both in the presence and absence of glutathione gave pK alpha values of much less than 4, 5.2, 7.1, and 7.8 for the four side chains that were identified by site-specific mutagenesis as His14, His83, His84, and His167, respectively. The magnetic resonance properties and titration behavior of His14 suggest that this residue is buried in a hydrophobic environment. Conservative replacement of each histidine with asparagine results in mutant enzymes that have catalytic properties very close to the native protein as assessed with three different substrates, 1-chloro-2,4-dinitrobenzene, 4-phenyl-3-buten-2-one, and phenanthrene 9,10-oxide. The results indicate clearly that none of the histidine residues of isoenzyme 3-3 is essential for stabilization of the bound glutathione thiolate or for any other aspect of catalysis.  相似文献   

20.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号