首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.  相似文献   

2.
Methotrexate is a slow, tight-binding, competitive inhibitor of human dihydrofolate reductase (hDHFR), an enzyme that provides key metabolites for nucleotide biosynthesis. In an effort to better characterize ligand binding in drug resistance, we have previously engineered hDHFR variant F31R/Q35E. This variant displays a >650-fold decrease in methotrexate affinity, while maintaining catalytic activity comparable to the native enzyme. To elucidate the molecular basis of decreased methotrexate affinity in the doubly substituted variant, we determined kinetic and inhibitory parameters for the simple variants F31R and Q35E. This demonstrated that the important decrease of methotrexate affinity in variant F31R/Q35E is a result of synergistic effects of the combined substitutions. To better understand the structural cause of this synergy, we obtained the crystal structure of hDHFR variant F31R/Q35E complexed with methotrexate at 1.7-Å resolution. The mutated residue Arg-31 was observed in multiple conformers. In addition, seven native active-site residues were observed in more than one conformation, which is not characteristic of the wild-type enzyme. This suggests that increased residue disorder underlies the observed methotrexate resistance. We observe a considerable loss of van der Waals and polar contacts with the p-aminobenzoic acid and glutamate moieties. The multiple conformers of Arg-31 further suggest that the amino acid substitutions may decrease the isomerization step required for tight binding of methotrexate. Molecular docking with folate corroborates this hypothesis.Human dihydrofolate reductase (hDHFR)6 catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate in a NADPH-dependent manner. 5,6,7,8-Tetrahydrofolate is a cofactor in purine and thymidylate biosynthesis, which are essential metabolites in cell division and proliferation. As a consequence of its essential role in nucleoside biosynthesis, hDHFR has been extensively exploited as a drug target. Inhibition with folate antagonists, or antifolates, arrests cell proliferation. The most effective clinical antifolate to date is methotrexate (MTX (Fig. 1)), a slow, tight-binding competitive inhibitor that displays high affinity for hDHFR (KiMTX = 3.4 pm). MTX is currently used to treat a variety of diseases, including cancer (13), and autoimmune diseases such as juvenile idiopathic arthritis (4). A number of resistance mechanisms to MTX have been observed in cancer patients, including impaired transport of MTX to the cytoplasm (5) and decreased retention of MTX in the cell (6). Numerous ex vivo studies have reported mutations in the hDHFR gene resulting in an enzyme variant with decreased affinity for MTX (7, 8). These have contributed to increase our understanding of the molecular basis for active-site discrimination between the substrate, DHF, and its competitive inhibitor, MTX. Understanding the molecular interactions that affect tight binding of MTX to the active site of DHFR will contribute to our understanding of antifolate binding to DHFR, which can in turn contribute to the design of more efficient inhibitors.Open in a separate windowFIGURE 1.Chemical structures of hDHFR ligands. Atom numbering is shown on DHF.A considerable number of DHFR active-site variants have been identified in MTX-resistant cancer cell lines (although never in patients) (9) or engineered in vitro to elucidate the role of active site residues in the binding of MTX. Amino acid substitutions at residues Ile-7 (10), Leu-22 (11, 12), Phe-31 (13), Phe-34 (14), Arg-70 (15), and Val-115 (16) have yielded MTX-resistant variants. These residues are all present in the folate-binding pocket (17). Because MTX and DHF bind to the active site of hDHFR in a similar manner, all known substitutions causing a decrease in MTX affinity also decrease DHF affinity and overall catalytic efficiency (7, 16, 18). However, the loss of DHF affinity and catalytic efficiency is generally smaller than the loss of MTX affinity. This is often attributed to formation of different contacts with either ligand due to the 180° inversion of the pterin ring of bound DHF relative to MTX (17, 19).Crystal structures of MTX-resistant point mutants have offered insight into the causes of decreased binding of MTX or other antifolates (17, 2024). To this day, crystal structures of MTX-resistant hDHFR variants L22F, L22R, and L22Y (12), as well as F31G and F31S (25), complexed to various antifolates, have been reported. Only the L22Y variant has been co-crystallized with MTX. Despite its decreased affinity for MTX (L22Y KiMTX = 11 nm versus WT KiMTX < 31 pm (18)), the inhibitor in the variant structure was bound in the same way as in the native enzyme, making interpretation of decreased affinity difficult to assess. Nonetheless, the low probability conformation of residue Tyr-22 suggested that the presence of a bulky aromatic residue in this area of the folate-binding pocket generated unfavorable hydrophobic interactions with the 2,4-diaminopterin moiety of the inhibitor (12). This is also expected to reduce DHF substrate binding. Structures of MTX-resistant variants F31G and F31S were obtained complexed to N-[4-[(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)methyl]methylamino]benzoyl]-l-glutamate (MTXO) (25), a MTX analog in which the 2,4–2,4-diaminopterin moiety is replaced by a 2,4-diaminofuropyrimidine moiety. Superposition of MTXO-bound variants with MTX-bound WT hDHFR revealed that the ligands bind to the active site in an analogous manner. It was suggested that decreased MTX binding in the substituted variants resulted from the loss of van der Waals and hydrophobic contacts established between the native Phe-31 and the p-ABA and 2,4-diaminopterin moieties of MTX. F31G and F31S display a 10-fold decrease in affinity for MTX relative to WT hDHFR (KiMTX < 31 pm (18)). Further Phe-31 variants (i.e. F31R; KiMTX = 7 nm, 200-fold decrease in MTX affinity) (10) display larger decreases in affinity relative to F31G and F31S. This cannot be rationalized by reduction of side-chain contacts with the inhibitor due to the presence of a smaller side chain.These results illustrate the difficulty of gaining insight into the molecular causes for altered MTX binding. This may be partly attributed to the very tight binding of MTX to the native enzyme, such that binding to resistant variants often remains in the sub-nanomolar or low nanomolar range, where the general mode of ligand binding has not changed appreciably relative to the native enzyme. Combining active-site mutations in hDHFR by protein engineering has been shown to generate variants with greatly decreased affinity to MTX (18, 26). Studying the molecular interactions in highly MTX-resistant hDHFR variants offers the possibility of capturing more important changes in enzyme-ligand interactions.Here, we report detailed observations for the mode of MTX resistance in the combinatorial variant F31R/Q35E. Variant F31R/Q35E is a relevant candidate for better understanding the specific interactions that govern ligand recognition in the folate binding site, because it displays a >650-fold decrease in MTX affinity (KiMTX = 21 nm) accompanied by a modest, 9-fold decrease of affinity for the substrate DHF relative to WT hDHFR (18). In addition, we have recently shown that this variant is an efficient selectable marker for various mammalian cell types, including murine hematopoietic stem cells (18).7 Because mutations giving rise to MTX resistance are not observed in mammals, and because MTX is approved for human treatment, engineered resistant DHFRs offer great potential as human selective markers ex vivo or in vivo (10, 27, 28). To better understand the effect of either amino acid substitution on each ligand, a kinetic double mutant cycle was constructed with the simple variants F31R and Q35E. The crystal structure of the F31R/Q35E variant was obtained with bound MTX at 1.7-Å resolution, to elucidate the structural basis of MTX resistance in this variant. In addition, molecular docking was performed with the F31R/Q35E structure to evaluate the role of the two substitutions toward folate binding. Overall, the results reveal synergistic effects of the combined substitutions toward loss of MTX binding, characterized by increased disorder of specific residues throughout the active site of the highly MTX-resistant F31R/Q35E variant.  相似文献   

3.
Human embryonic stem cells (hES Cs) are an attractive alternative cell source for hematopoietic gene therapy applications as the cells are easily modified with lentiviral or other vectors and can be subsequently induced to differentiate into hematopoietic progenitor cells. However, demonstration of the full hematopoietic potential of hESC-derived progeny is challenging due to low marrow engraftment and the difficulty of detecting cells in the peripheral blood of human/mouse xenografts. Methotrexate (MTX) chemotherapy coupled with expression of a drug resistant dihydrofolate reductase such as Tyr22 (Tyr22DHFR) has the potential to selectively increase engraftment of gene-modified human hematopoietic cells in mice, which would allow for better phenotypic characterization of hESC-derived cells in vivo. We showed that hES Cs transduced with Tyr22DHFR-GFP encoding lentivirus vectors differentiate into MTX resistant (MTXr) hemato-endothelial cells. MTX treatment of immunodeficient mice infused with Tyr22DHFR hESC-derived hemato-endothelial cells increased the long-term engraftment of human cells in the bone marrow of MTX-treated mice. In contrast to previous studies, these results indicate that MTX administration has the potential to support in vivo selection that is maintained after cessation of treatment. The MTX/Tyr22DHFR system may therefore be useful for enrichment of gene-modified cell populations in human stem cell and gene therapy applications.  相似文献   

4.
5.
We report a rapid and reliable 2-tier selection and screen for detection of activity as well as drug-resistance in mutated variants of a clinically-relevant drug-target enzyme. Human dihydrofolate reductase point-mutant libraries were subjected to a 1st-tier bacterial complementation assay, such that bacterial propagation served as an indicator of enzyme activity. Alternatively, when selection was performed in the presence of the inhibitor methotrexate (MTX), propagation indicated MTX resistance. The selected variants were then subjected to a 2nd-tier in vitro screen in 96-well plate format using crude bacterial lysate. Conditions were defined to establish a threshold for activity or for MTX resistance. The 2nd-tier assay allowed rapid detection of the best variants among the leads and provided reliable estimates of relative reactivity, (k(cat)) and IC(50)(MTX). Screening saturation libraries of active-site positions 7, 15, 24, 70, and 115 revealed a variety of novel mutations compatible with reactivity as well as 2 novel MTX-resistant variants: V115A and V115C. Both variants displayed K(i)(MTX)=20 nM, a 600-fold increase relative to the wild-type. We also present preliminary results from screening against further antifolates following simple modifications of the protocol. The flexibility and robustness of this method will provide new insights into interactions between ligands and active-site residues of this clinically relevant human enzyme.  相似文献   

6.
BACKGROUND: Systemic in vivo gene therapy has resulted in widespread correction in animal models when treated at birth. However, limited improvement was observed in postnatally treated animals with mainly targeting to the liver and bone marrow. It has been shown that an O(6)-methylguanine-DNA-methyltransferase variant (MGMT(P140K)) mediated in vivo selection of transduced hematopoietic stem cells (HSC) in animals. METHODS: We investigated the feasibility of MGMT(P140K)-mediated selection in primary hepatocytes from a mouse model of mucopolysaccharidosis type I (MPS I) in vitro using lentiviral vectors. RESULTS: We found that multiple cycles of O(6)-benzylguanine (BG)/1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment at a dosage effective for ex vivo HSC selection led to a two-fold increase of MGMT-expressing primary hepatocytes under culture conditions with minimum cell expansion. This enrichment level was comparable to that obtained after selection at a hepatic maximal tolerated dose of BCNU. Similar levels of increase were observed regardless of initial transduction frequency, or the position of MGMT (upstream or downstream of internal ribosome entry site) in the vector constructs. In addition, we found that elongation factor 1alpha promoter was superior to the long-terminal repeat promoter from spleen focus-forming virus with regard to transgene expression in primary hepatocytes. Moreover, the levels of therapeutic transgene expression in transduced, enzyme-deficient hepatocytes directly correlated with the doses of BCNU, leading to metabolic correction in transduced hepatocytes and metabolic cross-correction in neighbouring non-transduced MPS I cells. CONCLUSIONS: These results demonstrate that MGMT(P140K) expression confers successful protection/selection in primary hepatocytes, and provide 'proof of concept' to the prospect of MGMT(P140K)-mediated co-selection for hepatocytes and HSC using BG/BCNU treatment.  相似文献   

7.
There is marked pH dependence of the rate constant (koff) for tetrahydrofolate (H4folate) dissociation from its ternary complex with human dihydrofolate reductase (hDHFR) and NADPH. Similar pH dependence of H4folate dissociation from the ternary complex of a variant of hDHFR with the substitution Phe31----Leu (F31L hDHFR) causes this dissociation to become rate limiting in the enzyme mechanism at pH approximately 5, and this accounts for the marked decrease in kcat for this variant as the pH is decreased from 7 to 5. This decreased kcat at low pH is not seen for most DHFRs. koff for dissociation of folate, dihydrofolate (H2folate), and H4folate from their binary complexes with hDHFR is similarly pH dependent. For all the complexes examined, the pH dependence of koff in the range pH 5-7 is well described by a pKa of about 6.2 and must be due to ionization of a group on the enzyme. In the higher pH range (7-10), koff increases further as the pH is raised, and this relation is governed by a second pKa which is close to the pKa for ionization of the amide group (HN3-C4O) of the respective ligands. Thus, ionization of the ligand amide group also increases koff. Evidence is presented that the dependence of pH on koff for hDHFR accounts for the shape of the kcat versus pH curve for both hDHFR as well as its F31L variant and contributes to the higher efficiency of hDHFR compared with bacterial DHFR.  相似文献   

8.
Definitive cure of an animal model of a human disease by gene transfer into hematopoietic stem cells has not yet been accomplished in the absence of spontaneous in vivo selection for transduced cells. Erythropoietic protoporphyria is a genetic disease in which ferrochelatase is defective. Protoporphyrin accumulates in erythrocytes, leaks into the plasma and results in severe skin photosensitivity. Using a mouse model of erythropoietic protoporphyria, we demonstrate here that ex vivo preselection of hematopoietic stem cells transduced with a polycistronic retrovirus expressing both human ferrochelatase and green fluorescent protein results in complete and long-term correction of skin photosensitivity in all transplanted mice.  相似文献   

9.
R E Corin  T Turner  P Szabo 《Biochemistry》1986,25(13):3768-3773
A series of murine erythroleukemia cell (MELC) variants was generated by selection for the ability to grow in increasing concentrations of the folate antagonist methotrexate (MTX). Growth of the parental MELC strain DS-19 was completely inhibited by 0.1 microM MTX. We isolated cells able to grow in 5, 40, 200, 400, and 800 microM MTX. Growth rates and yields were essentially the same in the presence or absence of the selective dose of MTX for all variants. MTX resistance was not the result of a transport defect. Dihydrofolate reductase (DHFR) from our variants and DS-19 was inhibited to the same extent by MTX. Variants had increased dihydrofolate reductase activities. The specific activity of DHFR was proportional to the selective concentration of MTX employed to isolate a given variant. DNA dot blotting established that the cloned variant (MR400-3) had a 160-fold increase in DHFR gene copy number relative to the parental strain (DS-19). Hybridization studies performed in situ established the presence of amplified DHFR genes on the chromosomes of the MTX-resistant but not the MTX-sensitive (parental) cells. Quantitation of DHFR mRNA by cytoplasmic dot blotting established that the amplified DHFR gene expression was proportional to gene copy number. Thus, MTX resistance was due to amplification of the DHFR gene. The variants retained the ability to be induced to differentiate in response to dimethyl sulfoxide and hexamethylenebis(acetamide) as evaluated by the criteria of globin mRNA accumulation, hemoglobin accumulation, cell volume decreases, and terminal cell division.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have studied the discrepancy in the degree of methotrexate (MTX) resistance that exists between two clonal cell lines, mouse 3T6 R50 cells and Chinese hamster ovary B11 0.5 cells that overexpress comparable levels of dihydrofolate reductase, yet exhibit a 100-fold difference in MTX resistance while maintaining similar sensitivity to the lipophilic antifolates trimetrexate and piritrexim. These data suggested that R50 cells may possess additional mechanism(s) of antifolate resistance, such as MTX transport alteration. Flow cytometric analysis using fluorescein methotrexate revealed comparable levels of fluorescein MTX displacement with lipophilic antifolates in viable R50 and B11 0.5 cells, but marked insensitivity of R50 cells to MTX competition, thus suggesting a poor uptake of MTX into R50 cells. Analysis of the kinetic parameters of dihydrofolate reductase from R50 cells neither showed alterations in enzyme affinities for various antifolates nor in the Michaelis constant for folic acid and NADPH nor a change in the pH activity optimum. R50 cell-free extracts contained wild-type levels of folylpoly-gamma-glutamyl synthetase activity. However, following metabolic labeling with [3H]MTX, no MTX polyglutamates could be detected in R50 cells. We conclude that the high level of MTX resistance in R50 cells is multifactorial, including overexpression of dihydrofolate reductase, reduced MTX transport, and possibly altered formation of MTX polyglutamates. The potential interactions between the different modalities of MTX resistance in R50 cells are being discussed.  相似文献   

11.

Background

Hematopoietic stem cell (HSC) gene therapy has cured immunodeficiencies including X-linked severe combined immunodeficiency (SCID-X1) and adenine deaminase deficiency (ADA). For these immunodeficiencies corrected cells have a selective advantage in vivo, and low numbers of gene-modified cells are sufficient to provide therapeutic benefit. Strategies to efficiently transduce and/or expand long-term repopulating cells in vivo are needed for treatment of diseases that require higher levels of corrected cells, such as hemoglobinopathies. Here we expanded corrected stem cells in vivo in a canine model of a severe erythroid disease, pyruvate kinase deficiency.

Methodology/Principal Findings

We used a foamy virus (FV) vector expressing the P140K mutant of methylguanine methyltransferase (MGMTP140K) for in vivo expansion of corrected hematopoietic repopulating cells. FV vectors are attractive gene transfer vectors for hematopoietic stem cell gene therapy since they efficiently transduce repopulating cells and may be safer than more commonly used gammaretroviral vectors. Following transplantation with HSCs transduced ex vivo using a tri-cistronic FV vector that expressed EGFP, R-type pyruvate kinase, and MGMTP140K, we were able to increase marking from approximately 3.5% to 33% in myeloid long-term repopulating cells resulting in a functional cure.

Conclusions/Significance

Here we describe in one affected dog a functional cure for a severe erythroid disease using stem cell selection in vivo. In addition to providing a potential cure for patients with pyruvate kinase deficiency, in vivo selection using foamy vectors with MGMTP140K has broad potential for several hematopoietic diseases including hemoglobinopathies.  相似文献   

12.
Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.  相似文献   

13.
Efficient gene transfer into hematopoietic stem cells is vital for the success of gene therapy of hematopoietic and immune system disorders. An in vivo selection system based on a mutant form of the O6-methylguanine-DNA-methyltransferase gene (MGMTm) is considered one of the more promising strategies for expansion of hematopoietic cells transduced with viral vectors. Here we demonstrate that MGMTm-expressing cells can be efficiently selected using lysomustine, a nitrosourea derivative of lysine. K562 and murine bone marrow cells expressing MGMTm are protected from the cytotoxic action of lysomustine in vitro. We also show in a murine model that MGMTm-transduced hematopoietic cells can be expanded in vivo on transplantation into sublethally irradiated recipients followed by lysomustine treatment. These results indicate that lysomustine can be used as a potent novel chemoselection drug applicable for gene therapy of hematopoietic and immune system disorders.  相似文献   

14.
Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of Km values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating Km and Kcat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The Km for NADPH for the K54Q mutant enzyme is 58-fold higher, while the Km for NADH for K54Q is only 3.9-fold higher than that of the wild type, indicating that the substitution of Lys-54 with Gln-54 decreases the apparent affinity of the enzyme for NADPH dramatically, but has a lesser effect on the apparent affinity for NADH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

16.
In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h) DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (Ki 49 nM) compared to hDHFR (Ki 4093 nM). Two mutants that contain one substitution from pj- and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show Ki values of 593 and 617 nM, respectively; these Ki values are well above both the Ki for pjDHFR and are similar to pcDHFR (Q35K/N64F and Q35S/N64F) (305 nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes.  相似文献   

17.
Hubel A  Norman J  Darr TB 《Cryobiology》1999,38(2):140-153
The freezing responses of hematopoietic progenitor cells isolated from normal donors and from donors with mucopolysaccharidosis type I (MPS I) were determined using cryomicroscopy and analyzed using theoretical models for water transport and intracellular ice formation. The cells from donors with MPS I used in this investigation were cultured and transduced with a retroviral vector for the alpha-l-iduronidase (IDUA) enzyme in preclinical studies for human gene therapy. The water transport and intracellular ice formation (IIF) characteristics were determined at different time points in the culture and transduction process for hematopoietic progenitor cells expressing CD34 antigen from donors with MPS I and from normal donors. There were statistically significant changes in water transport, osmotically inactive cell volume fraction, and permeability between cells from different sources (normal donors vs donors with MPSI) and different culture conditions (freshly isolated vs cultured and transduced). Specifically, Lpg and Ea increased after ex vivo culture of the cells and the changes in permeability parameters were observed after as little as 3 days in culture. Similarly, the IIF characteristics of hematopoietic progenitor cells can also be influenced by the culture and transduction process. The IIF characteristics of freshly isolated cells from donors with MPS I were statistically distinct from those of cultured and transduced cells from the same donor. The ability to cryopreserve cells which are cultured ex vivo for therapeutic purposes will require an understanding of the biophysical changes resulting from the culture conditions and the manner in which these changes influence viability.  相似文献   

18.
Yu JH  Schaffer DV 《Journal of virology》2006,80(18):8981-8988
Gammaretroviruses, such as murine leukemia virus (MLV), are functionally distinguished from lentiviruses, such as human immunodeficiency virus, by their inability to infect nondividing cells. Attempts to engineer this property into MLV have been hindered by an incomplete understanding of early events in the viral life cycle. We utilized a transposon-based method to generate saturated peptide insertion libraries of MLV gag-pol variants with nuclear localization signals randomly incorporated throughout these overlapping genes. High-throughput selection of the libraries via iterative retroviral infection of nondividing cells led to the identification of a novel variant that successfully transduced growth-arrested cells. Vector packaging by cotransfection of the gag-pol.NLS variant with wild-type gag-pol produced high-titer virions capable of infecting neurons in vitro and in vivo. The capacity of mutant virions to transduce nondividing cells could help to elucidate incompletely understood mechanisms of the viral life cycle and greatly broaden the gene therapy applications of retroviral vectors. Furthermore, the ability to engineer key intracellular viral infection steps has potential implications for the understanding, design, and control of other post-entry events. Finally, this method of library generation and selection for a desired phenotype directly in a mammalian system can be readily expanded to address other challenges in protein engineering.  相似文献   

19.
Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6-7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients' genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Polβ, Lig IIIα and XRCC1) or using NEIL2-FLAG immunocomplexes, an ~5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant's lower affinity for other repair proteins, particularly Polβ. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development.  相似文献   

20.
We have used highly specific, directly fluorescein-conjugated heterologous (conventional) and monoclonal antibodies directed against mouse immunoglobulin isotypes in conjunction with the fluorescence activated cell sorter (FACS) to enrich and clone hybridoma cells producing new immunoglobulin heavy chain constant regions. Each variant retains the parental heavy chain variable region and the parental immunoglobulin light chain; thereby each variant binds the same dansyl (DNS) hapten. These isotype switch variants occur at frequencies of approximately 10-5 to 10-6. We were able to isolate the variants by first sorting for an approximate 1000-fold enrichment of the desired immunoglobulin-producing cells, growing these cells for five to nine days, followed by a second 1000-fold enrichment and direct cell cloning into 96 well culture trays. Clones were screened only 3-5 weeks after the original selection for secretion of dansyl-binding immunoglobulin of the selected isotype. Judicious combination of existing methods permits improved analytical techniques using the cell sorter. These include: first, "red" fluorescence staining of dead cells with ethidium bromide or propidium iodide and using the red fluorescence measurement to exclude dead cells from the green fluorescence selection; and second, the use logarithmic amplification of fluorescence signals, allowing for more succinct selection of fluorescence parameters for sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号