首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioactive lipids sphingosine 1-phosphate (SPP), sphingosylphosphorylcholine, and lysophosphatidic acid play an important role in angiogenesis as a result of their effects on both the migration of endothelial cells (ECs) and the integrity of EC monolayers. Here we show that extremely low concentrations of serum and nanomolar concentrations of these biologically active lipids stimulate migration of human aortic smooth muscle cells (SMCs). However, at dosages most effective in promoting EC migration and in enhancing EC monolayer integrity, serum and SPP potently inhibited SMC migration; SPP also blocked the migration induced by protein growth factors. Treatment of SMCs with SPP induced transient phosphorylation of a 175- to 185-kDa protein corresponding to the PDGF receptor, indicating transactivation of this receptor. SPP and related lipids may play a key role in angiogenesis by coordinating the migration of both endothelial cells and vascular smooth muscle cells in response to the changing gradients of these bioactive lipid messengers.  相似文献   

2.
Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol-anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide-differentiated HL60 cells in a pertussis toxin-sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase gamma in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge.  相似文献   

3.
4.
Sphingosine 1-phosphate (S1P) is accumulated in lipoproteins, especially high-density lipoprotein (HDL), in plasma. However, it remains uncharacterized how extracellular S1P is produced in the CNS. The treatment of rat astrocytes with retinoic acid and dibutyryl cAMP, which induce apolipoprotein E (apoE) synthesis and HDL-like lipoprotein formation, stimulated extracellular S1P accumulation in the presence of its precursor sphingosine. The released S1P was present together with apoE particles in the HDL fraction. S1P release from astrocytes was inhibited by the treatment of the cells with glybenclamide or small interfering RNAs specific to ATP-binding cassette transporter A1 (ABCA1). Astrocytes from Abca1−/− mice also showed impairment of retinoic acid/dibutyryl cAMP-induced S1P release in association with the blockage of HDL-like lipoprotein formation. However, the formation of either apoE or lipoprotein itself was not sufficient, and additional up-regulation of ABCA1 was requisite to stimulate S1P release. We conclude that the S1P release from astrocytes is coupled with lipoprotein formation through ABCA1.  相似文献   

5.
Sphingolipids function as cell membrane components and as signaling molecules that regulate critical cellular processes. To study unacylated and acylated sphingolipids in cells with fluorescence microscopy, the fluorophore in the analog must be located within the sphingoid backbone and not the N-acyl fatty acid side chain. Although such fluorescent sphingosine analogs have been reported, they either require UV excitation or their emission overlaps with that of the most common protein label, green fluorescent protein (GFP). We report the synthesis and use of a new fluorescent sphingolipid analog, borondipyrromethene (BODIPY) 540 sphingosine, which has an excitation maximum at 540 nm and emission that permits its visualization in parallel with GFP. Mammalian cells readily metabolized BODIPY 540 sphingosine to more complex fluorescent sphingolipids, and subsequently degraded these fluorescent sphingolipids via the native sphingolipid catabolism pathway. Visualization of BODIPY 540 fluorescence in parallel with GFP-labeled organelle-specific proteins showed the BODIPY 540 sphingosine metabolites were transported through the secretory pathway and were transiently located within lysosomes, mitochondria, and the nucleus. The reported method for using BODIPY 540 sphingosine to visualize sphingolipids in parallel with GFP-labeled proteins within living cells may permit new insight into sphingolipid transport, metabolism, and signaling.  相似文献   

6.
Many biological networks respond to various inputs through a common signaling molecule that triggers distinct cellular outcomes. One potential mechanism for achieving specific input–output relationships is to trigger distinct dynamical patterns in response to different stimuli. Here we focused on the dynamics of p53, a tumor suppressor activated in response to cellular stress. We quantified the dynamics of p53 in individual cells in response to UV and observed a single pulse that increases in amplitude and duration in proportion to the UV dose. This graded response contrasts with the previously described series of fixed pulses in response to γ‐radiation. We further found that while γ‐triggered p53 pulses are excitable, the p53 response to UV is not excitable and depends on continuous signaling from the input‐sensing kinases. Using mathematical modeling and experiments, we identified feedback loops that contribute to specific features of the stimulus‐dependent dynamics of p53, including excitability and input‐duration dependency. Our study shows that different stresses elicit different temporal profiles of p53, suggesting that modulation of p53 dynamics might be used to achieve specificity in this network.  相似文献   

7.
Oligomerization of G protein‐coupled receptors is a recognized mode of regulation of receptor activities, with alternate oligomeric states resulting in different signaling functions. The CXCR4 chemokine receptor is a G protein‐coupled receptor that is post‐translationally modified by tyrosine sulfation at three sites on its N‐terminus (Y7, Y12, Y21), leading to enhanced affinity for its ligand, stromal cell derived factor (SDF‐1, also called CXCL12). The complex has been implicated in cancer metastasis and is a therapeutic target in cancer treatment. Using molecular dynamics simulation of NMR‐derived structures of the CXCR4 N‐terminus in complex with SDF‐1, and calculations of electrostatic binding energies for these complexes, we address the role of tyrosine sulfation in this complex. Our results show that sulfation stabilizes the dimeric state of the CXCR4:SDF‐1 complex through hydrogen bonding across the dimer interface, conformational changes in residues at the dimer interface, and an enhancement in electrostatic binding energies associated with dimerization. These findings suggest a mechanism through which post‐translational modifications such as tyrosine sulfation might regulate downstream function through modulation of the oligomeric state of the modified system.  相似文献   

8.
Sphingosine 1-phosphate (S1P) is accumulated in platelets and released on stimulation by thrombin or Ca(2+). Thrombin-stimulated S1P release was inhibited by staurosporin, whereas Ca(2+)-stimulated release was not. When the platelet plasma membrane was permeabilized with streptolysin O (SLO), S1P leaked out with cytosol markers, whereas granular markers remained in the platelets. The SLO-induced S1P leakage required BSA, probably for solubilization of S1P in the medium. These results indicate that S1P is localized in the inner leaflet of the plasma membrane and that its release is a carrier-mediated process. We also used alpha-toxin (ATX), which makes smaller pores in the plasma membrane than SLO and depletes cytosolic ATP without BSA-dependent S1P leakage. The addition of ATP drove S1P release from ATX platelets. The ATP-driven S1P release from ATX platelets was greatly enhanced by thrombin. An ATP binding cassette transporter inhibitor, glyburide, prevents ATP- and thrombin-induced S1P release from platelets. Ca(2+) also stimulated S1P release from ATX platelets without ATP, whereas the Ca(2+)-induced release was not inhibited by glyburide. Our results indicate that two independent S1P release systems might exist in the platelet plasma membrane, an ATP-dependent system stimulated by thrombin and an ATP-independent system stimulated by Ca(2+).  相似文献   

9.
Lim M  Choi SK  Cho YE  Yeon SI  Kim EC  Ahn DS  Lee YH 《PloS one》2012,7(4):e35177

Aims

The goal of the current study was to determine whether the sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) pathway is involved in myogenic vasoconstriction under normal physiological conditions. In the present study, we assessed whether endogenous S1P generated by pressure participates in myogenic vasoconstriction and which signaling pathways are involved in SK1/S1P-induced myogenic response under normal physiological conditions.

Methods and Results

We measured pressure-induced myogenic response, Ca2+ concentration, and 20 kDa myosin light chain phosphorylation (MLC20) in rabbit posterior cerebral arteries (PCAs). SK1 was expressed and activated by elevated transmural pressure in rabbit PCAs. Translocation of SK1 by pressure elevation was blocked in the absence of external Ca2+ and in the presence of mechanosensitive ion channel and voltage-sensitive Ca2+ channel blockers. Pressure-induced myogenic tone was inhibited in rabbit PCAs treated with sphingosine kinase inhibitor (SKI), but was augmented by treatment with NaF, which is an inhibitor of sphingosine-1-phosphate phosphohydrolase. Exogenous S1P further augmented pressure-induced myogenic responses. Pressure induced an increase in Ca2+ concentration leading to the development of myogenic tone, which was inhibited by SKI. Exogenous S1P further increased the pressure-induced increased Ca2+ concentration and myogenic tone, but SKI had no effect. Pressure- and exogenous S1P-induced myogenic tone was inhibited by pre-treatment with the Rho kinase inhibitor and NADPH oxidase inhibitors. Pressure- and exogenous S1P-induced myogenic tone were inhibited by pre-treatment with S1P receptor blockers, W146 (S1P1), JTE013 (S1P2), and CAY10444 (S1P3). MLC20 phosphorylation was increased when the transmural pressure was raised from 40 to 80 mmHg and exogenous S1P further increased MLC20 phosphorylation. The pressure-induced increase of MLC20 phosphorylation was inhibited by pre-treatment of arteries with SKI.

Conclusions

Our results suggest that the SK1/S1P pathway may play an important role in pressure-induced myogenic responses in rabbit PCAs under normal physiological conditions.  相似文献   

10.
11.
12.
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.  相似文献   

13.
Sphingosine 1-phosphate (Sph-1-P), a bioactive lysophospholipid capable of inducing a wide spectrum of biological responses, acts as an intercellular mediator, through interaction with the endothelial differentiation gene (EDG)/S1P family of G protein-coupled receptors. In this study, the effects of JTE-013, a specific antagonist of the migration-inhibitory receptor EDG-5, on Sph-1-P-elicited responses were examined in human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (SMCs), which expressed EDG-5 protein weakly and abundantly, respectively. This pyrazolopyridine compound reversed the inhibitory effect of Sph-1-P on SMC migration and further enhanced Sph-1-P-stimulated HUVEC migration. In contrast, its effect on Sph-1-P-induced intracellular Ca(2+) mobilization was marginal. Our results indicate that specific regulation of Sph-1-P-modulated migration responses in vascular cells can be achieved by EDG-5 antagonists and that manipulation of Sph-1-P biological activities by each EDG antagonist may lead to a therapeutical application to control vascular diseases.  相似文献   

14.
Live-cell microscopy imaging of fluorescent-tagged fusion proteins is an essential tool for cell biologists. Total internal reflection fluorescence microscopy (TIRFM) has joined confocal microscopy as a complementary system for the imaging of cell surface protein dynamics in mammalian and yeast systems because of its high temporal and spatial resolution. Here we present an alternative to TIRFM, termed variable-angle epifluorescence microscopy (VAEM), for the visualization of protein dynamics at or near the plasma membrane of plant epidermal cells and root hairs in whole, intact seedlings that provides high-signal, low-background and near real-time imaging. VAEM uses highly oblique subcritical incident angles to decrease background fluorophore excitation. We discuss the utilities and advantages of VAEM for imaging of fluorescent fusion-tagged marker proteins in studying cortical cytoskeletal and membrane proteins. We believe that the application of VAEM will be an invaluable imaging tool for plant cell biologists.  相似文献   

15.
免疫细胞与炎症介质在肠炎发病中的作用   总被引:4,自引:0,他引:4  
Ding GF 《生理科学进展》2001,32(3):233-239
肠炎的起因是多样的,但引起粘膜的损伤而出现各种临床症状的机制却是相似的。近年来免疫生物学,分子免疫学的发展对肠道粘膜免疫功能的了解有了巨大的进步。肠炎的起因是病原或过敏原刺激活化了先天免疫和特异免疫系统的细胞,由肠道上皮细胞、巨噬细胞和淋巴细胞分泌多种细胞因子,这些细胞因子再活化或动员更多的细胞,并进一步分泌更多的因子,形成病原、细胞和因子之间的级联反应。由细胞与因子的综合作用,造成肠道局部的炎症。炎症因子和抗炎因子比例的消长决定了炎症的转归和预后。对炎症因子及其拮抗剂作用机制的了解,将有助于肠炎的诊断和治疗。  相似文献   

16.
Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4, cysteinyl‐LTs (CysLTs) and platelet‐activating factor (PAF). Yet, their potentially cooperative role in regulating I/R‐mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre‐treated orally with BIIL 284 and/or WEB 2086 and MK‐0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre‐treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL‐8, C5a and zymosan‐activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti‐inflammatory effect, regulating PMN migration and oedema formation.  相似文献   

17.
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.  相似文献   

18.
We applied two-photon laser-scanning microscopy (TPLSM) to motion-sensitive visual interneurons of the fly to study Ca(2+) dynamics in vivo at a higher spatial and temporal resolution than possible with conventional fluorescence microscopy. Based on a custom-built two-photon microscope, we performed line scans to measure changes in presynaptic Ca(2+) concentrations elicited by visual stimulation. We used a fast avalanche photodiode (APD) with a high quantum efficiency to detect even low levels of emitted fluorescence. Our experiments show that our in vivo preparation is amenable to TPLSM: with excitation intensities low enough not to cause photodamage, activity-dependent fluorescence changes of Ca(2+)-sensitive dyes can be detected in small neuronal branches. The performance of two-photon and conventional Ca(2+) imaging carried out consecutively at the same neuron is compared and it is demonstrated that two-photon imaging allows us to detect differences in Ca(2+) dynamics between individual neurites.  相似文献   

19.
The vascular and immune systems of mammals are closely intertwined: the individual components of the immune system must move between various body compartments to perform their function effectively. Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, exerts effects on the two organ systems and influences the interaction between them. In the resting state, the vascular S1P gradient contributes to control of lymphocyte recirculation through the blood, lymphoid tissue and lymphatic vasculature. The high level of S1P in blood helps maintain endothelial barrier integrity. During the inflammatory process, both the level of S1P in different immune compartments and S1P receptor expression on lymphocytes and endothelial cells are modified, resulting in functionally important changes in endothelial cell and lymphocyte behaviour. These include transient arrest of lymphocytes in secondary lymphoid tissue, crucial for generation of adaptive immunity, and subsequent promotion of lymphocyte recruitment to sites of inflammation. This review begins with an outline of the basic biochemistry of S1P. S1P receptor signalling is then discussed, followed by an exploration of the roles of S1P in the vascular and immune systems, with particular focus on the interface between them. The latter part concerns crosstalk between S1P and other signalling pathways, and concludes with a look at therapies targeting the S1P-S1P receptor axis.  相似文献   

20.
At embryonic stages of development, oligodendrocyte precursors (OPCs) generated in the preoptic area colonize the entire optic nerve (ON). Different factors controlling migration of ON OPCs have been identified, including secreted growth factors, morphogens and guidance cues, as well as cell adhesion molecules. We have shown previously that the soluble form of the extracellular matrix (ECM) protein anosmin-1, impairs OPC migration induced by FGF-2. In the present work, we show that anosmin-1 is expressed by both migrating OPCs and axons of the retinal ganglion cells in the embryonic ON. In vitro, we observe that OPC migration is strongly impaired by contact with anosmin-1 when used as a substrate and, in contrast to previous results, this effect is independent of FGF-2/FGFR1 signaling. We also show that OPCs preferentially adhere to anosmin-1 when compared with other ECM molecules used as substrates, and that when the endogenous anosmin-1 expressed by OPCs is blocked, OPC adhesion to all the different substrates (including anosmin-1), is significantly reduced. This novel effect of anosmin-1 on cell adhesion is also independent of FGF-2/FGFR1. We finally demonstrate that the blockade of the endogenous anosmin-1 expressed by OPCs impairs their migration. Our data suggest that the endogenous anosmin-1 expressed by OPCs is necessary for the correct adhesion of these cells to the different components of the ECM (including anosmin-1 itself), contributing to the migration of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号