共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Bacillus subtilis chemoreceptor McpB is a dimer of identical subunits containing two transmembrane (TM) segments (TM1, residues 17-34: TM2, residues 280-302) in each monomer with a 2-fold axis of symmetry. To study the organization of the TM domains, the wild-type receptor was mutated systematically at the membrane bilayer/extracytoplasmic interface with 15 single cysteine (Cys) substitutions in each of the two TM domains. Each single Cys substitution was capable of complementing a null allele in vivo, suggesting that no significant perturbation of the native tertiary or quaternary structure of the chemoreceptor was introduced by the mutations. On the basis of patterns of disulfide crosslinking between subunits of the dimeric receptor, an alpha-helical interface was identified between TM1 and TM1' (containing residues 32, 36, 39, and 43) and between TM2 and TM2' (containing residues 276, 277, 280, 283 and 286). Pairs of cysteine substitutions (positions 34/280 and 38/273) in TM1 and TM2 were used to further elucidate specific contacts within a monomer subunit, enabling a model to be constructed defining the organization of the TM domain. Crosslinking of residues that were 150-180 degrees removed from position 32 (positions 37, 41, and 44) suggested that the receptors may be organized as an array of trimers of dimers in vivo. All crosslinking was unaffected by deletion of cheB and cheR (loss of receptor demethylation/methylation enzymes) or by deletion of cheW and cheV (loss of proteins that couple receptors with the autophosphorylating kinase). These findings indicate that the organization of the transmembrane region and the stability of the quaternary complex of receptors are independent of covalent modifications of the cytoplasmic domain and conformations in the cytoplasmic domain induced by the coupling proteins. 相似文献
3.
Claudia T. Evans 《Journal of molecular recognition : JMR》1995,8(6):327-333
This study examined the organization of the Krebs tricarboxylic acid (TCA) cycle by metabolic engineering and high-resolution 13C NMR. The oxidation of [1,2,3-13C]propionate to glutamate via the TCA cycle was measured in wild-type (WT) and a citrate synthase mutant (CS?) strain of Escherichia coli transformed with allosteric E. coli citrate synthase (ECCS) or non-allosteric pig citrate synthase (PCS). The 13C fractional enrichment in glutamate C-2, C-3, and C-4 in ECCS and PCS were similar; although quantitative differences in total citrate synthase activity and total C-4 labeling of glutamate were observed in ECCS and PCS. Allosteric ECCS cells contained 10-fold less total enzyme activity than PCS but only 50% less total labeling in glutamate C-4 and equivalent doubling times. The observed spectra were mathematically fitted using an iterative procedure(TCACALC) and yielded an acetate/succinyl-CoA flux ratio of 10 for both ECCS and PCS, a result that is in agreement with the isotopomer analyses of the 13C spectra of cells presented with [3-13C] propionate or [2-13C]propionate. The results are consistent with the presence of an allosteric citrate synthase in ECCS and a non-allosteric citrate synthase in PCS. The former maintains TCA cycle flux via alternative propionate pathways activated by positive allosteric mechanisms and the latter via elevated enzyme levels. 相似文献
4.
Wehenkel A Bellinzoni M Schaeffer F Villarino A Alzari PM 《Journal of molecular biology》2007,374(4):890-898
Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the α isoform of human PP2C (PP2Cα), which folds into an α/β domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn2+-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions. 相似文献
5.
D. Wyrzykowski A. Tesmar D. Jacewicz J. Pranczk L. Chmurzyński 《Journal of molecular recognition : JMR》2014,27(12):722-726
The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2‐(N‐morpholino)ethanesulfonic acid (Mes), piperazine‐N,N′‐bis(2‐ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional–independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Sac7d is a hyperthermophile chromatin protein which binds non-specifically to the minor groove of duplex DNA and induces a sharp kink of 66 degrees with intercalation of valine and methionine side-chains. We have utilized the thermal stability of Sac7d and the lack of sequence specificity to define the thermodynamics of DNA binding over a wide temperature range. The binding affinity for poly(dGdC) was moderate at 25 degrees C (Ka = 3.5(+/-1.6) x 10(6) M(-1)) and increased by nearly an order of magnitude from 10 degrees C to 80 degrees C. The enthalpy of binding was unfavorable at 25 degrees C, and decreased linearly from 5 degrees C to 60 degrees C. A positive binding heat at 25 degrees C is attributed in part to the energy of distorting DNA, and ensures that the temperature of maximal binding affinity (75.1+/-5.6 degrees C) is near the growth temperature of Sulfolobus acidocaldarius. Truncation of the two intercalating residues to alanine led to a decreased ability to bend and unwind DNA at 25 degrees C with a small decrease in binding affinity. The energy gained from intercalation is slightly greater than the free energy penalty of bending duplex DNA. Surprisingly, reduced distortion from the double alanine substitution did not lead to a significant decrease in the heat of binding at 25 degrees C. In addition, an anomalous positive DeltaCp of binding was observed for the double alanine mutant protein which could not be explained by the change in polar and apolar accessible surface areas. Both the larger than expected binding enthalpy and the positive heat capacity can be explained by a temperature dependent structural transition in the protein-DNA complex with a Tm of 15-20 degrees C and a DeltaH of 15 kcal/mol. Data are discussed which indicate that the endothermic transition in the complex is consistent with DNA distortion. 相似文献
7.
Paromita Seal Jyotirmoy Sikdar Amartya Roy 《Journal of biomolecular structure & dynamics》2013,31(12):3137-3154
Ibuprofen, used for the treatment of acute and chronic pain, osteoarthritis, rheumatoid arthritis, and related conditions has ample affinity to globular proteins. Here we have explored this fundamental study pertaining to the interaction of ibuprofen with human hemoglobin (HHb), using multispectroscopic, calorimetric, and molecular modeling techniques to gain insights into molecular aspects of binding mechanism. Ibuprofen-induced graded decrease in absorption spectra indicates protein disruption along with sedimentation of HHb particle. Red shifting of absorption peak at 195 nm indicates alteration in the secondary structure of HHb upon interaction with ibuprofen. Flouremetric and isothermal titration calorimetric (ITC) studies suggested one binding site in HHb for ibuprofen at 298.15 K. However, with increase in temperature, ITC revealed increasing number of binding sites. The negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) along with positive value of entropy change (ΔS0) strongly suggest that it is entropy-driven spontaneous exothermic reaction. Moreover, hydrophobic interaction, hydrogen bonding, and π–π interaction play major role in this binding process as evidenced from ANS (8-anilino-1-napthalenesulphonic acid), sucrose binding, and molecular modeling studies. The interaction impacts on structural integrity and functional aspects of HHb as confirmed by CD spectroscopy, increased free iron release, increased rate of co-oxidation and decreased rate of esterase activity. These findings suggest us to conclude that ibuprofen upon interaction perturbs both structural and functional aspects of HHb. 相似文献
8.
Andrea L. Edwards Francis E. Reyes Annie Héroux Robert T. Batey 《RNA (New York, N.Y.)》2010,16(11):2144-2155
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch. 相似文献
9.
A new microcalorimetric method for recording the kinetic parameters k(cat), K(m) and K(i) of alpha-amylases using polysaccharides and oligosaccharides as substrates is described. This method is based on the heat released by glycosidic bond hydrolysis. The method has been developed to study the active site properties of the cold-active alpha-amylase produced by an Antarctic psychrophilic bacterium in comparison with its closest structural homolog from pig pancreas. It is shown that the psychrophilic alpha-amylase is more active on large macromolecular substrates and that the higher rate constants k(cat) are gained at the expense of a lower affinity for the substrate. The active site is able to accommodate larger inhibitory complexes, resulting in a mixed-type inhibition of starch hydrolysis by maltose. A method for recording the binding enthalpies by isothermal titration calorimetry in a low-affinity system has been developed, allowing analysis of the energetics of weak ligand binding using the allosteric activator chloride. It is shown that the low affinity of the psychrophilic alpha-amylase for chloride is entropically driven. The high enthalpic and entropic contributions of activator binding suggest large structural fluctuations between the free and the bound states of the cold-active enzyme. The kinetic and thermodynamic data for the psychrophilic alpha-amylase indicate that the strictly conserved side-chains involved in substrate binding and catalysis possess an improved mobility, responsible for activity in the cold, and resulting from the disappearance of stabilizing interactions far from the active site. 相似文献
10.
Mireille Nishiyama 《Journal of molecular biology》2010,396(1):1-194
Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. They are composed of four different homologous protein subunits that need to be assembled in a defined order. In the periplasm, the pilus chaperone FimC donates a β-strand segment to the subunits to complete their imperfect immunoglobulin-like fold. During subunit assembly, this segment of the chaperone is displaced by an amino-terminal extension of an incoming subunit in a reaction termed donor-strand exchange. To date, the molecular mechanisms underlying the coordinated subunit assembly, in particular the role of the outer membrane usher FimD, are still poorly understood. Here we show that the binding of complexes between FimC and the different pilus subunits to the amino-terminal substrate recognition domain of FimD is an extremely fast process, with association rate constants in the range of 107-108 M− 1 s− 1 at 20 °C. Furthermore, we demonstrate that the ordered assembly of pilus subunits is a consequence of the usher's ability to selectively catalyze the assembly of defined subunit-subunit pairs that are adjacent in the mature pilus. The usher therefore coordinates the assembly of pilus subunits at the stage of donor-strand exchange between pairs of subunits and not at the level of the initial binding of chaperone-subunit complexes. 相似文献
11.
D. Flemming Hansen Zheng Zhou Lisa M. Miller Jenkins Lewis E. Kay 《Journal of molecular biology》2009,387(1):1-43
The genome of eukaryotic cells is packed into a compact structure called chromatin that consists of DNA as well as histone and non-histone proteins. Histone chaperones associate with histone proteins and play important roles in the assembly of chromatin structure and transport of histones in the cell. The recently discovered histone chaperone Chz1 associates with the variant histone H2A.Z of budding yeast and plays a critical role in the exchange of the canonical histone pair H2A-H2B for the variant H2A.Z-H2B. Here, we present an NMR approach that provides accurate estimates for the rates of association and dissociation of Chz1 and H2A.Z-H2B. The methodology exploits the fact that in a 1:1 mixture of Chz1 and H2A.Z-H2B, the small amounts of unbound proteins that are invisible in spectra produce line broadening of signals from the complex that can be quantified in terms of the thermodynamics and kinetics of the exchange process. The dissociation rate constant measured, 22 ± 2 s− 1, provides an upper bound for the rate of transfer of H2A.Z-H2B to the chromatin remodeling complex, and the faster-than-diffusion association rate, 108 ± 107 M− 1 s− 1, establishes the importance of attractive electrostatic interactions that form the chaperone-histone complex. 相似文献
12.
Iwama T Ito Y Aoki H Sakamoto H Yamagata S Kawai K Kawagishi I 《The Journal of biological chemistry》2006,281(26):17727-17735
The chemoreceptor Tcp of Salmonella enterica serovar Typhimurium can sense citrate and a metal-citrate complex as distinct attractants. In this study, we tried to investigate the molecular mechanism of this discrimination. That citrate binds directly to Tcp was verified by the site-specific thiol modification assays using membrane fractions prepared from Escherichia coli cells expressing the mutant Tcp receptors in which single Cys residues were introduced at positions in the putative ligand-binding pocket. To determine the region responsible for the ligand discrimination, we screened for mutations defective in taxis to magnesium in the presence of citrate. All of the isolated mutants from random mutagenesis with hydroxylamine were defective in both citrate and metal-citrate sensing, and the mutated residues are located in or near the alpha1-alpha2 and alpha3-alpha4 loops within the periplasmic domain. Further analyses with site-directed replacements around these regions demonstrated that the residue Asn(67), which is presumed to lie at the subunit interface of the Tcp homodimer, plays a critical role in the recognition of the metal-citrate complex but not that of citrate. Various amino acids at this position differentially affect the citrate and metal-citrate sensing abilities. Thus, for the first time, the abilities to sense the two attractants were genetically dissected. Based on the results obtained in this study, we propose models in which the discrimination of the metal-citrate complex from citrate involves cooperative interaction at Asn(67) and allosteric switching. 相似文献
13.
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions. 相似文献
14.
【目的】初步探究田菁根瘤菌Sinorhizobium alkalisoli YIC4027中唯一含有PAS结构域可溶性趋化受体Tlp1的功能机理。【方法】本研究基于Red重组系统以及三亲接合技术进行缺失突变株的构建。对野生型和突变株的生长情况、趋化能力、趋氧性、细胞凝结、生物膜的形成、胞外多糖产量、在宿主根表的定殖及竞争性结瘤等表型进行了测定。【结果】与野生型相比,突变株的生长不受影响,趋化和趋氧能力降低,在宿主根表的定殖及竞争性结瘤能力降低,而细胞凝结能力、生物膜形成以及胞外多糖产生能力等均有所提高【。结论】本研究首次证实了S. alkalisoli YIC4027中可溶性趋化受体Tlp1影响细胞的趋化运动。 相似文献
15.
Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme. 相似文献
16.
17.
Ferric citrate, the form in which iron is transported in dicotyledonous plants, diffuses slowly through cotton cellulose dialysis membranes, used to serve as a model for plant cell walls. KCl at m M concentrations stimulates diffusion.Photoreduction of ferric citrate results in a rapid and nearly complete reduction of iron when the citrate concentration is low (50 M) as in the xylem sap of plants growing on non-calcareous soils. In 1 m M citrate, as in the xylem sap of plants that activate their Fe-efficiency reactions, fast reoxidation prevents the buildup of high ferrous levels until after citrate has been largely broken down by photodestruction.Photodestruction of citrate, catalyzed by iron, results in increase of pH in the solution and in the formation of a non-dialyzable form of iron, and thus can lead to deposition of inactive iron in leaves. 相似文献
18.
19.
Eunki Kim 《Biotechnology and Bioprocess Engineering》1999,4(3):185-188
Organic acid production as by-products during citric acid production under low thiamine concentration byY. lipolytica was analyzed using HPLC. Main by-products were pyruvic acid and alpha-keto glutaric acid. From the analysis of byproduct
formation, it was proposed that oxaloacetate synthesis via TCA cycles remained as important as synthesis from pyruvate carboxylation
pathway during the citric acid production. 相似文献
20.
Bernhard Baum Mohamed Zayed Andreas Heine Gerhard Klebe 《Journal of molecular biology》2009,390(1):56-69
The field of medicinal chemistry aims to design and optimize small molecule leads into drug candidates that may positively interfere with pathological disease situations in humans or combat the growth of infective pathogens. From the plethora of crystal structures of protein-inhibitor complexes we have learned how molecules recognize each other geometrically, but we still have rather superficial understanding of why they bind to each other. This contribution surveys a series of 26 thrombin inhibitors with small systematic structural differences to elucidate the rationale for their widely deviating binding affinity from 185 μM to 4 nM as recorded by enzyme kinetic measurements. Five well-resolved (resolution 2.30 - 1.47 Å) crystal structures of thrombin-inhibitor complexes and an apo-structure of the uncomplexed enzyme (1.50 Å) are correlated with thermodynamic data recorded by isothermal titration calorimetry with 12 selected inhibitors from the series. Taking solubility data into account, the variation in physicochemical properties allows conclusions to be reached about the relative importance of the enthalpic binding features as well as to estimate the importance of the parameters more difficult to capture, such as residual ligand entropy and desolvation properties. The collected data reveal a comprehensive picture of the thermodynamic signature that explains the so far poorly understood attractive force experienced by m-chloro-benzylamides to thrombin. 相似文献