首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Alkylresorcinols (ARs) are phenolic lipids present at high concentrations in the outer parts of rye and wheat kernels and have been proposed as biomarkers for intake of whole grain and bran products of these cereals. AR are absorbed in the small intestine and after hepatic metabolism two major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), are excreted in urine either as such or as conjugates. Urine samples from nine individuals were incubated with different enzymes to assess type and extent of conjugates. In comparison with DHBA, which was mostly found in the free form, the less polar DHPPA was conjugated to a greater extent and the major conjugates were glucuronides. In this method, urine samples were hydrolyzed using β-glucuronidase from Helix pomatia and syringic acid was used as internal standard. Samples, silylated with BSTFA, were analyzed by GC–MS utilizing a BP-5 fused silica capillary column and single ion monitoring of molecular ions (m/z 370 [DHBA], m/z 398 [DHPPA]). Recoveries of DHBA and DHPPA were estimated to be 94% and 93%, respectively. The average intra-assay/inter-assay coefficients of variation were 4.9/5.7% for DHBA and 7.6/9.3% for DHPPA.  相似文献   

2.
Alkylresorcinols, phenolic lipids present in high amounts in wholegrain wheat and rye, are of interest as potential biomarkers of the intake of these cereals. Alkylresorcinols are known to be absorbed by humans and animals, but little is known about their metabolism or resulting metabolites. A preliminary human study was carried out to identify alkylresorcinol metabolites in human urine. Urine samples, collected before and after a wheat-bran based meal, were deconjugated with beta-glucuronidase/sulphatase and then extracted with ethyl acetate. Extracts were separated by thin-layer chromatography, and fractions containing alkylresorcinols and possible metabolites were identified by retention on the plate compared to standard compounds, and staining with fast blue B. These fractions were further analysed by gas chromatography-mass spectrometry. Deconjugated human urine after the wheat-bran based meal contained two alkylresorcinol metabolites, 3,5-dihydroxybenzoic acid and 3-(3,5-dihydroxyphenyl)-1-propanoic acid, as well as smaller amounts of unchanged alkylresorcinols, confirming the hypothesis that alkylresorcinols are metabolised in humans via beta-oxidation of their alkyl chain.  相似文献   

3.
The amphetamine-derived designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) is an upcoming substance on the illicit drug market. In the current study, the identification of its metabolites in rat urine and their toxicological detection in the authors' systematic toxicological analysis (STA) procedure were examined. DOI is extensively metabolized by O-demethylation and beside small amounts of parent compound it was found to be excreted mainly in form of metabolites. The STA procedure using full-scan GC-MS allowed proving an intake of a common drug users' dose of DOI by detection of the two O-demethyl metabolite isomers in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of DOI in human urine.  相似文献   

4.
Studies are described on the toxicological analysis of the piperazine-derived designer drug 1-(4-methoxyphenyl)piperazine (MeOPP) in rat urine using gas chromatography-mass spectrometry (GC-MS). The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of MeOPP and its metabolites 1-(4-hydroxy phenyl)piperazine and 4-hydroxyaniline in rat urine after administration of a single dose corresponding to doses commonly taken by drug users. Therefore, this procedure should also be suitable for detection of a MeOPP intake in human urine. However, the metabolites of MeOPP are not unique and can be produced from other drugs. Therefore, differentiation of use of this designer drug from use of the medicaments dropropizine, oxypertine or others, which are metabolized to the MeOPP isomer 1-(2-methoxyphenyl)piperazine, is discussed.  相似文献   

5.
Shi L  Wudy SA  Maser-Gluth C  Hartmann MF  Remer T 《Steroids》2011,76(1-2):140-144
Urine volume should be considered as a confounder when using urinary free cortisol (UFF) and cortisone (UFE) to assess glucocorticoid (GC) status. We aimed to examine whether adrenal androgen (AA) metabolites may be also affected by urine volume in healthy children. To compare the flow dependence of GC and AA metabolites, specific GC metabolites were examined. In 24-h urine samples of 120 (60 boys) healthy children (4-10 yr), steroid profiles were determined by GC-MS analysis, UFF and UFE by radioimmunoassay. To assess daily AA and GC secretion rates, 7 quantitatively most important AA (∑C19) and GC (∑C21) metabolites were summed. Sum of DHEA and its 16α-hydroxylated metabolites were denoted as DHEA&M. Association of urine volume with AA (∑C19, DHEA&M, DHEA, 16α-hydroxy-DHEA, 3β,16α,17β-androstenetriol) and GC (∑C21, UFF, UFE, 6β-hydroxycortisol, 20α-dihydrocortisol) were examined in linear regression models. Among the examined AA metabolites, 16α-hydroxy-DHEA (β=0.56, p<0.0001) and DHEA (β=0.43, p=0.05) showed relatively strong association with urine volume. A trend was seen for ∑C19 (β=0.23, p=0.08), but not for DHEA&M (p>0.1). Regarding GC metabolites, urine volume showed a stronger association with cortisol's direct metabolites, i.e., cortisone, 6β-hydroxycortisol and 20α-dihydrocortisol (β=0.4-0.6, p<0.01) than with cortisol itself (β=0.28, p<0.05). ∑C21 was not associated with urine volume. In conclusion, like UFF and UFE, renal excretion of DHEA, 16α-hydroxy-DHEA, 6β-hydroxycortisol, and 20α-dihydrocortisol may also depend on urine volume. The intrarenal production of the latter three and cortisone might explain their relative strong water-flow-dependency. Total AA or GC secretion marker appears not to be relevantly confounded by urine volume.  相似文献   

6.
The phenethylamine-derived designer drug 4-bromo-2,5-dimethoxy-beta-phenethylamine (2C-B) is known to be extensively metabolized in various species including humans. In rat urine, 2C-B was found to be excreted mainly via its metabolites. In the current study, the toxicological detection of these metabolites in the authors' systematic toxicological analysis (STA) procedure was examined. The STA procedure using full-scan GC-MS allowed proving an intake of a common drug abusers' dose of 2C-B by detection of the O-demethyl deaminohydroxy and two isomers of the O-demethyl metabolites in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-B in human urine.  相似文献   

7.
We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics.  相似文献   

8.
Studies on the metabolism and on the toxicological analysis of mefenorex [R,S-N-(3-chloropropyl)-α-methylphenethylamine, MF] using gas chromatography-mass spectrometry (GC-MS) and fluorescence polarization immunoassay (FPIA) are described. The metabolites were identified in urine samples of volunteers by GC-MS. Besides MF, thirteen metabolites including amphetamine (AM) could be identified and three partially overlapping metabolic pathways could be postulated. For GC-MS detection, the systematic toxicological analysis procedure including acid hydrolysis, extraction at pH 8-9 and acetylation was suitable (detection limits 50 ng/ml for MF and 100 ng/ml for AM). Excretion studies showed, that only AM but neither MF nor its specific metabolites were detectable between 32 and 68 h after ingestion of 80 mg of MF. Therefore, misinterpretation can occur. The Abbott TDx FPIA amphetamine/methamphetamine II gave positive results up to 68 h. All the positive immunoassay results could be confirmed by the described GC-MS procedure.  相似文献   

9.
In clinical practice, the measurement of urinary free cortisol (UFC) provides the most sensitive and specific diagnostic information for excess adrenal production of cortisol. The existing methodologies (RIA and HPLC) are time consuming, costly, involve tedious extractions, derivatizations and problems with non-specific interactions with cortisol metabolites in urine. In the present study, we describe the development of an SPE–CE method for the rapid analysis of UFC. UFC was concentrated using SPE C18 cartridges (3M Empore) under a vacuum and eluted with acetonitrile–SDS. The use of 10% acetone to wash cartridges before final elution with acetonitrile–SDS showed significant improvements in the free cortisol recovery. The complete extraction was accomplished in 10–15 min with a recovery of 89–94%. CE analysis was done on a Beckman P/ACE 5010 with detection at 254 nm using a neutral capillary. Detection limits of free cortisol in urine was improved to 10 μg/l with SPE compared to 500 μg/l without SPE. No interferences either from BSA or other urinary cortisol metabolites affected the free cortisol determinations. The results showed the feasibility of a rapid UFC detection with improved sample handling capacity.  相似文献   

10.
The designer drug 2,5-dimethoxy-4-methyl-amphetamine (DOM, STP) is known to be extensively metabolized in various species. The current study showed that cytochrome P450 2D6 was the only isoenzyme involved in formation of the main metabolite hydroxy DOM. In addition, the authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS was suitable to prove an intake of a common drug users' dose of DOM by detection of hydroxy DOM in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of DOM in human urine. However, DOM and/or other metabolites such as deamino-oxo-hydroxy DOM might be the target analyte in urine of CYP2D6 poor metabolizers.  相似文献   

11.
Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.  相似文献   

12.
Azospirillum lipoferum M was found to produce catechol-type of siderophores under iron-starved conditions. Chemical characterization of siderophores revealed the presence of salicylic acid, 2,3-dihydroxybenzoic acid (DHBA), and 3,5-DHBA conjugated with threonine and lysine. Siderophore production was found to be maximum after 28 h of growth. In addition to their established role in iron transport, the siderophores exhibited antimicrobial activity against various bacterial and fungal isolates.  相似文献   

13.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

14.
Plasma obtained from 20 week old normal Wistar-derived and Zucker (fa/fa) rats was analysed using a number of different analytical methodologies to obtain global metabolite profiles as part of metabonomic investigations of animal models of diabetes. Samples were analysed without sample pre-treatment using 1H NMR spectroscopy, after acetonitrile solvent protein precipitation by ultra-performance liquid chromatography-MS (UPLC-MS) and after acetonitrile protein precipitation and derivatisation for capillary gas chromatography-MS (GC-MS). Subsequent data analysis using principal components analysis revealed that all three analytical platforms readily detected differences between the plasma metabolite profiles of the two strains of rat. There was only limited overlap between the metabolites detected by the different methodologies and the combination of all three methods of metabolite profiling therefore provided a much more comprehensive profile than would have been provided by their use individually.  相似文献   

15.
Studies are described on the metabolism and the toxicological analysis of the new designer drug rac-p-methoxymethamphetamine (PMMA) in rat urine using gas chromatography-mass spectrometry (GC-MS). The identified metabolites indicated that PMMA was extensively metabolized mainly by O-demethylation to pholedrine and to a minor extent to p-methoxyamphetamine (PMA), 1-hydroxypholedrine diastereomers (one being oxilofrine), 4'-hydroxy-3'-methoxymethamphetamine and 4'-hydroxy-3'-methoxyamphetamine. The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of the main metabolites of PMMA in rat urine after a dose corresponding to that of drug users. Therefore, this procedure should be suitable for detection of PMMA intake in human urine via its metabolites. However, it must be considered that pholedrine and oxilofrine are also in therapeutic use. Differentiation of PMMA, PMA and/or pholedrine intake is discussed.  相似文献   

16.
Phthalates are used primarily as plasticizers to make polyvinyl chloride (PVC) soft and flexible. In recent years the phthalate esters have attracted increasing attention as environmental and biomedical pollutants and, because of their toxicological characteristics. In particular, they are more and more recognized as endocrine disrupters. In this context, we describe herein an efficient synthetic pathway leading to a series of metabolites of di(2-ethylhexyl) phthalate (DEHP). Mono(2-ethylhexenyl) phthalate was used as starting material to obtain these products in good yield, large scale and GC-MS purity. The metabolites of DEHP were synthesized, for the first time, as biomarkers to verify their quantitative determination in human urine and serum by GC-MS analysis for studying the exposure to phthalates and establishing reference values.  相似文献   

17.
5-Thiazoleacetamide derivatives of AR122 and AR125 were screened as α-glucosidase inhibitors by in silico high-throughput screening from commercial drug-like small compound libraries. Inhibition of α-glucosidase with AR122 and AR125 is time dependent: with no preincubation, AR122 and AR125 are relatively moderate inhibitors, but interestingly, after a 120 min incubation, they were 50-fold more potent (AR122: IC(50)=2.47 μM and AR125: IC(50)=27.1 μM). Plots of ln [residual α-glucosidase activity %] versus preincubation time show a pseudo-first order kinetics for both inhibitors. Through dialysis of enzyme-inhibitor complexes, no activity recovery was shown. These results suggest that AR122 and AR125 constitute a new class of noncarbohydrate mimetic inhibitor with an irreversible mechanism.  相似文献   

18.
Epichlorohydrin (ECH) is used in many industrial processes. Different toxic effects of ECH were found in rodents. The metabolism of ECH was investigated before in rats using [14C]ECH. The aim of this investigation was the development of non-radioactive quantitative analytical methods for measuring two urinary metabolites of ECH, namely 3-chloro-2-hydroxypropylmercapturic acid (CHPMA) and α-chlorohydrin (α-CH). The identity of CHPMA and α-CH excreted in urine of rats treated with 5 to 35 mg/kg ECH was confirmed by GC-MS. The quantitative analysis of CHPMA, involving ethyl acetate extraction from acidified urine and subsequent methylation and analysis by gas chromatography-flame photometric detection (GC-FPD), showed a method limit of detection of 2 μg/ml. The analysis of α-CH, based on ethyl acetate extraction and subsequent analysis by GC-ECD, showed a method limit of detection of 2 μg/ml. CHPMA and α-CH derivatives could be determined quantitatively down to concentrations of 0.5 and 0.4 μg/ml urine, respectively, by selected-ion monitoring GC-MS under EI conditions. Cumulative urinary excretion of CHPMA and α-CH by rats treated with ECH were found to be 31 ± 10 and 1.4 ± 0.6% (n = 13) of the ECH dose, respectively. For CHPMA, the dose-excretion relationship suggested partially saturated ECH metabolism. For α-CH, the dose-excretion relationship was linear. With fractionated urine collection it was found that approximately 74 and 84% of the total cumulative excretion of CHPMA and α-CH, respectively, took place within the first 6 h after administration of ECH. From these investigations it is concluded that the GC-FPD and GC-ECD based methods developed are sufficiently sensitive to measure urinary excretion of CHPMA and α-CH in urine from rats administered 5 to 35 mg/kg ECH. It is anticipated that the analysis of CHPMA and α-CH based on GC-MS may be sufficiently sensitive to investigate urinary excretion from humans occupationally exposed to ECH.  相似文献   

19.
The effect of the membranotropic agent alkylresorcinol 5C10 on the respiration, nucleic acid and protein synthesis in isolated thymocytes was studied. Within the 5C10 concentration range of 10(-7)-10(-5) M, the inhibition of respiration and incorporation of labelled precursors into thymocyte proteins and DNA was observed. In case of respiration and protein synthesis, a 50% inhibition was observed at alkylresorcinol concentrations of 10(-8) and 0.5.10(-5) M, respectively. The rate of 3H-thymidine incorporation into DNA progressively decreased already at 5C10 concentration of 10(-7) M. At 10(-6) M alkylresorcinol its inhibiting effect on DNA synthesis was about 30% and it did not change with a further rise in the inhibitor concentration up to 10(-5) M. In contrast, the rate of RNA synthesis significantly increased (ca. by 20%) within the alkylresorcinol concentration range of 10(-6)-10(-5) M. At 5C10 concentrations above 10(-5) M, the state of thymocytes in the preagglutination period appeared to be critical and was characterized by a dramatic inhibition of all the parameters under study. The experimental results suggest that alkylresorcinol 5C10 causes the inhibition of processes that are functionally coupled with biological membranes.  相似文献   

20.
The analysis of the essential oil from rhizome and roots of Ferula hermonis Boiss. (Apiaceae) by GC-FID, GC-MS and 13C NMR allowed the identification of 79 constituents, more than 90% of the oil, the major one being α-pinene (43.3%), followed by α-bisabolol (11.1%) and the unusual acetylenic compound 3,5-nonadiyne (4.4%). The antifungal activity of the essential oil before and after fractionation was assayed against several yeasts and filamentous fungi. Purification of the active fractions afforded 3,5-nonadiyne, α-bisabolol, jaeschkeanadiol angelate, α-bisabolol oxide B and trans-verbenol, as well as two purified fractions, one of them (JB73) with 73% of jaeschkeanadiol benzoate and the other with 50% of spathulenol. Determination of MIC and MFC values of all these products evidenced strong antifungal activities for JB73 and 3,5-nonadiyne. Particularly, against the dermatophyte Tricophyton mentagrophytes, MIC and MFC values were 0.25 μg/ml for JB73, and 8 μg/ml for 3,5-nonadiyne, the former being more active than amphotericin B and nystatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号