首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of studies have identified cytosolic prostaglandin E(2) synthase (cPGES)/p23 as a cytoplasmic protein capable of metabolism of prostaglandin E(2) (PGE(2)) from the cyclooxygenase metabolite prostaglandin endoperoxide (PGH(2)). However, this protein has also been implicated in a number of other pathways, including stabilization of the glucocorticoid receptor (GR) complex. To define the importance of the functions assigned to this protein, mice lacking detectible cPGES/p23 expression were generated. cPGES/p23(-/-) pups die during the perinatal period and display retarded lung development reminiscent of the phenotype of GR-deficient neonates. Furthermore, GR-sensitive gluconeogenic enzymes are not induced in the prenatal period. However, unlike GR-deficient embryos, cPGES/p23(-/-) embryos are small and a proliferation defect is observed in cPGES/p23(-/-) fibroblasts. Analysis of arachidonic acid metabolites in embryonic tissues and primary fibroblasts failed to support a function for this protein in PGE(2) biosynthesis. Thus, while the growth retardation of the cPGES/p23(-/-) pups and decreased proliferation of primary fibroblasts identify functions for this protein in addition to GR stabilization, it is unlikely that these functions include metabolism of PGH(2) to PGE(2).  相似文献   

2.
Cytosolic prostaglandin (PG) E synthase (cPGES) is constitutively expressed in various cells and regulates cyclooxygenase (COX)-1-dependent immediate PGE(2) generation. Its primary structure is identical to co-chaperone p23, a heat shock protein 90 (Hsp90)-binding protein. We have revealed that Hsp90 regulated both cPGES/p23 and its client protein kinase CK2. In this study, in order to examine the role of cPGES/p23 in vivo, we generated mice deficient in cPGES/p23 by a targeted disruption of exons 2 and 3, containing Tyr9, which is essential for catalytic activity. Heterozygotes are viable, fertile, and appear normal, despite a decrease in cPGES/p23 protein level. A generation of offsprings derived from intercrosses of cPGES/p23 homozygous mice revealed that 109, 247, and 10 pups were wild type, heterozygous, and homozygous, respectively; however, all homozygotes died at birth. The absence of viable null mutants, with heterozygotes and wild-type offspring obtained at a ratio of approximately 2:1, indicated that homozygosity for the cPGES/p23 null mutant leads to peri-natal lethality. Embryos homozygous for cPGES/p23-null had lower body weights than wild-type embryos, and abnormal morphology of skin and lungs. Moreover, the PGE(2) content in the lungs of cPGES/p23-null embryos was lower than that of the wild type. These results indicate that cPGES-derived PGES is involved in the normal development of mouse embryonic lung.  相似文献   

3.
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2 enzymes, cyclooxygenase (COX) enzymes, and various lineagespecific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived PGH2 specifically to PGE2, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by antiinflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.  相似文献   

4.
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.  相似文献   

5.
NO produced by the inducible NO synthase (NOS2) and prostanoids generated by the cyclooxygenase (COX) isoforms and terminal prostanoid synthases are major components of the host innate immune and inflammatory response. Evidence exists that pharmacological manipulation of one pathway could result in cross-modulation of the other, but the sense, amplitude, and relevance of these interactions are controversial, especially in vivo. Administration of 6 mg/kg LPS to rats i.p. resulted 6 h later in induction of NOS2 and the membrane-associated PGE synthase (mPGES) expression, and decreased constitutive COX (COX-1) expression. Low level inducible COX (COX-2) mRNA with absent COX-2 protein expression was observed. The NOS2 inhibitor aminoguanidine (50 and 100 mg/kg i.p.) dose dependently decreased both NO and prostanoid production. The LPS-induced increase in PGE(2) concentration was mediated by NOS2-derived NO-dependent activation of COX-1 pathway and by induction of mPGES. Despite absent COX-2 protein, SC-236, a putative COX-2-specific inhibitor, decreased mPGES RNA expression and PGE(2) concentration. Ketoprofen, a nonspecific COX inhibitor, and SC-236 had no effect on the NOS2 pathway. Our results suggest that in a model of systemic inflammation characterized by the absence of COX-2 protein expression, NOS2-derived NO activates COX-1 pathway, and inhibitors of COX isoforms have no effect on NOS2 or NOS3 (endothelial NOS) pathways. These results could explain, at least in part, the deleterious effects of NOS2 inhibitors in some experimental and clinical settings, and could imply that there is a major conceptual limitation to the use of NOS2 inhibitors during systemic inflammation.  相似文献   

6.
7.
Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs encoded functional proteins that showed high homology with the human ortholog (microsomal glutathione S-transferase-like 1). mPGES expression was markedly induced by proinflammatory stimuli in various tissues and cells and was down-regulated by dexamethasone, accompanied by changes in COX-2 expression and delayed PGE(2) generation. Arg(110), a residue well conserved in the microsomal GSH S-transferase family, was essential for catalytic function. mPGES was functionally coupled with COX-2 in marked preference to COX-1, particularly when the supply of arachidonic acid was limited. Increased supply of arachidonic acid by explosive activation of cytosolic phospholipase A(2) allowed mPGES to be coupled with COX-1. mPGES colocalized with both COX isozymes in the perinuclear envelope. Moreover, cells stably cotransfected with COX-2 and mPGES grew faster, were highly aggregated, and exhibited aberrant morphology. Thus, COX-2 and mPGES are essential components for delayed PGE(2) biosynthesis, which may be linked to inflammation, fever, osteogenesis, and even cancer.  相似文献   

8.
9.
The recent identification and cloning of two glutathione-dependent prostaglandin E(2) synthase (PGES) genes has yielded important insights into the terminal step of PGE(2) synthesis. These enzymes form efficient functional pairs with specific members of the prostaglandin-endoperoxide H synthase (PGHS) family. Microsomal PGES (mPGES) is inducible and works more efficiently with PGHS-2, the inflammatory cyclooxygenase, while the cytoplasmic isoform (cPGES) pairs functionally with PGHS-1, the cyclooxygenase that ordinarily exhibits constitutive expression. KAT-50, a well differentiated thyroid epithelial cell line, expresses high levels of PGHS-2 but surprisingly low levels of PGE(2) when compared with human orbital fibroblasts. Moreover, PGHS-1 protein cannot be detected in KAT-50. We report here that KAT-50 cells express high basal levels of cPGES but mPGES mRNA and protein are undetectable. Thus, KAT-50 cells express the inefficient PGHS-2/cPGES pair, and this results in modest PGE(2) production. The high levels of cPGES and the absence of mPGES expression result from dramatic differences in the activities of their respective gene promoters. When mPGES is expressed in KAT-50 by transiently transfecting the cells, PGE(2) production is up-regulated substantially. These observations indicate that naturally occurring cells can express a suboptimal profile of PGHS and PGES isoforms, resulting in diminished levels of PGE(2) generation.  相似文献   

10.
The synthesis of PGE(2), the major vasodilator prostanoid of the ductus arteriosus (DA), is catalyzed by PGE(2) synthases (PGES). The factors implicated in increased PGE(2) synthesis in the perinatal DA are not known. We studied the developmental changes of PGES along with that of cyclooxygenase (COX)-2 and cytosolic phospholipase A(2) (cPLA(2)) in the DA of fetal (75-90% gestation) and immediately postnatal newborn (NB) piglets. Levels of microsomal PGES (mPGES), COX-2, and PGE(2) in the DA of NB were approximately 7-fold higher than in fetus; activities of cytosolic PGES (cPGES) and cPLA(2) in DA of the fetus and NB did not differ. Because platelet-activating factor (PAF) could regulate COX-2 expression, the former was measured and found to be more abundant in the DA of the NB than of fetus. PAF elicited an increase in mPGES, COX-2, and PGE(2) in fetal DA to levels approaching those of the NB; cPGES, cPLA(2), and COX-1 were unaffected. In perinatal NB DA, PAF receptor antagonists BN-52021 and THG-315 reduced mPGES, COX-2, and PGE(2) levels and were associated with increased DA tone. It is concluded that PAF contributes in regulating DA tone by governing mPGES, COX-2, and ensuing PGE(2) levels in the perinate.  相似文献   

11.
12.
Prostaglandin E(2) (PGE(2)) production involves the activity of a multistep biosynthetic pathway. The terminal components of this cascade, two PGE(2) synthases (PGES), have very recently been identified as glutathione-dependent proteins. cPGES is cytoplasmic, apparently identical to the hsp90 chaperone, p23, and associates functionally with prostaglandin-endoperoxide H synthase-1 (PGHS-1), the constitutive cyclooxygenase. A second synthase, designated mPGES, is microsomal and can be regulated. Here we demonstrate that mPGES and PGHS-2 are expressed at very low levels in untreated human orbital fibroblasts. Interleukin (IL)-1beta treatment elicits high levels of PGHS-2 and mPGES expression. The induction of both enzymes occurs at the pretranslational level, is the consequence of enhanced gene promoter activities, and can be blocked by dexamethasone (10 nm). SC58125, a PGHS-2-selective inhibitor, could attenuate the induction of mPGES, suggesting a dependence of this enzyme on PGHS-2 activity. IL-1beta treatment activates p38 and ERK mitogen-activated protein kinases. Induction of both mPGES and PGHS-2 was susceptible to either chemical inhibition or molecular interruption of these pathways with dominant negative constructs. These results indicate that the induction of PGHS-2 and mPGES by IL-1beta underlies robust PGE(2) production in orbital fibroblasts.  相似文献   

13.
We recently reported that lipoteichoic acid (LTA), a cell wall component of the gram-positive bacterium Staphylococcus aureus, stimulated inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. This study was carried out to further investigate the roles of COX-2 and prostaglandin E2 (PGE2) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Treatment of RAW 264.7 macrophages with LTA caused a time-dependent increase in PGE2 release. LTA-induced iNOS expression and NO release were inhibited by a non-selective COX inhibitor (indomethacin), a selective COX-2 inhibitor (NS-398), an adenylyl cyclase (AC) inhibitor (dideoxyadenosine, DDA), and a protein kinase A (PKA) inhibitor (KT-5720). Furthermore, both PGE2 and the direct PKA activator, dibutyryl-cAMP, also induced iNOS expression in a concentration-dependent manner. Stimulation of RAW 264.7 macrophages with LTA, PGE2, and dibutyryl-cAMP all caused p38 MAPK activation in a time-dependent manner. LTA-mediated p38 MAPK activation was inhibited by indomethacin, NS-398, and SB 203580, but not by PD 98059. The PGE2-mediated p38 MAPK activation was inhibited by DDA, KT-5720, and SB 203580, but not by PD 98059. LTA caused time-dependent activation of the nuclear factor-kappaB (NF-kappaB)-specific DNA-protein complex formation. The LTA-induced increase in kappaB-luciferase activity was inhibited by indomethacin, NS-398, KT-5720, and a dominant negative mutant of p38 alphaMAPK (p38 alphaMAPK DN). These results suggest that LTA-induced iNOS expression and NO release involve COX-2-generated PGE2 production, and AC, PKA, p38 MAPK, and NF-kappaB activation in RAW 264.7 macrophages.  相似文献   

14.
Here we report the molecular identification of cytosolic glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (cPGES), a terminal enzyme of the cyclooxygenase (COX)-1-mediated PGE(2) biosynthetic pathway. GSH-dependent PGES activity in the cytosol of rat brains, but not of other tissues, increased 3-fold after lipopolysaccharide (LPS) challenge. Peptide microsequencing of purified enzyme revealed that it was identical to p23, which is reportedly the weakly bound component of the steroid hormone receptor/hsp90 complex. Recombinant p23 expressed in Escherichia coli and 293 cells exhibited all the features of PGES activity detected in rat brain cytosol. A tyrosine residue near the N terminus (Tyr(9)), which is known to be critical for the activity of cytosolic GSH S-transferases, was essential for PGES activity. The expression of cPGES/p23 was constitutive and was unaltered by proinflammatory stimuli in various cells and tissues, except that it was increased significantly in rat brain after LPS treatment. cPGES/p23 was functionally linked with COX-1 in marked preference to COX-2 to produce PGE(2) from exogenous and endogenous arachidonic acid, the latter being supplied by cytosolic phospholipase A(2) in the immediate response. Thus, functional coupling between COX-1 and cPGES/p23 may contribute to production of the PGE(2) that plays a role in maintenance of tissue homeostasis.  相似文献   

15.
Release of prostaglandin E2 (PGE2) was studied in isolated ductus arteriosus preparations from immature (103 or 104 days gestation; term, 147 days) and near-term fetal lambs. Mature preparations produced measurable amounts of the compound in most cases and the release rate was 19 +/- 2 pg/(100 mg wet weight X min) at a PO2 of 3-8 Torr (1 Torr = 133.3 Pa). PGE2 release increased with the PO2 of the medium, peak values (about 125 pg/(100 mg X min)) being attained at 106-276 Torr when the oxygen-induced contraction was still submaximal. Experiments in which tissues were either contracted with excess potassium or relaxed with CO proved that PGE2 formation is independent from the contractile state. PGE2 was also released from ductus preparations lacking the adventitia, the intima, or both; however, release values were maximal when the adventitia was preserved. The magnitude of the intrinsic tone in these stripped preparations was inversely related to the rate of PGE2 formation. Reduced glutathione increased PGE2 release from the mature ductus, whole or stripped, and also relaxed hypoxic preparations; both effects were reversed by concomitant treatment with indomethacin. PGE2 synthesis tended to be greater in the immature than the mature ductus, maximal values (115 +/- 27 pg/(100 mg X min)) being observed at 6-8 Torr. We conclude that the ductus arteriosus is endowed with an enzyme system for the synthesis of PGE2 whose function accords with an effector role of the compound in the regulation of tone. These findings, together with the potent relaxation exerted by PGE2 at low PO2, indicate that the locally generated prostaglandin is well suited for keeping the ductus patent in the fetus.  相似文献   

16.
Certain uterine prostaglandins (PGs) are elevated at implantation sites and are needed to trigger the events of blastocyst implantation that include blastocyst-uterine attachment and stromal decidualization with vascular permeability changes. Several decades of investigations showed that treatment with PG synthesis inhibitors, prior to or during the time of implantation, resulted in either complete inhibition or a delay in implantation or reduction in the number of implantation sites with diminished decidual tissue. Consistent with these findings, we observed that whereas a selective PG endoperoxide synthase (Ptgs) 1 inhibitor SC-560 failed to inhibit implantation, a selective Ptgs2 inhibitor SC-236 showed significantly reduced number and size of implantation sites in progesterone-treated ovariectomized pregnant hamsters. It is known that Ptgs2 expression and Ptgs2-derived prostacyclin (PGI2) synthesis at implantation sites are needed for implantation in the mouse (a rodent that needs ovarian estrogen for implantation). However, it is unknown which Ptgs and PG synthases produce which PGs at implantation sites of the hamster (a rodent that does not need ovarian estrogen for implantation). Here we demonstrate that as blastocyst implantation proceeds, a reduction in Ptgs1 expression from uterine luminal epithelial cells and a gradual induction in Ptgs2 expression exclusively in luminal epithelial and adjacent decidual cells occurred at implantation sites of hamsters. Results also reveal that PGE2, but not PGI2, is the major PG at implantation sites where Ptgs2 and microsomal type PGE synthases but not PGI synthases are co-expressed. This elevated uterine PGE2 at implantation sites may serve to initiate or amplify physiological signals required for specific aspects of the implantation process in hamsters.  相似文献   

17.
Previous studies have indicated that lipopolysaccharide(LPS)from Gram-negative bacteria inplaque induces the release of prostaglandin E_2(PGE_2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase(ALPase)activity,PGE_2 production,and the expression of cyclooxygenase(COX-1,COX-2),PGE_2 receptors Ep1-4,and macrophage colonystimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10~(-3)M nicotinein the presence of 0,1,or 10μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured withnicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE_2production significantly increased in the former and increased further in the latter.By itself,nicotine did notaffect expression of COX-1,COX-2,any of the PGE_2 receptors,or M-CSF,but when both nicotine and LPSwere present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of10~(-4)M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE_2 production,and M-CSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.Theseresults suggest that LPS enhances the production of nicotine-induced PGE_2 by an increase in COX-2 expres-sion in osteoblasts,that nicotine-LPS-induced PGE_2 interacts with the osteoblast Ep4 receptor primarily inautocrine or paracrine mode,and that the nicotine-LPS-induced PGE_2 then decreases ALPase activity andincreases M-CSF expression.  相似文献   

18.
19.
Yamada T  Takusagawa F 《Biochemistry》2007,46(28):8414-8424
Prostaglandin E2 synthase (PGES) catalyzes the isomerization of PGH2 to PGE2. PGES type 2 (mPGES-2) is a membrane-associated enzyme, whose N-terminal section is apparently inserted into the lipid bilayer. Both intact and N-terminal truncated enzymes have been isolated and have similar catalytic activity. The recombinant N-terminal truncated enzyme purified from Escherichia coli HB101 grown in LB medium containing delta-aminolevulinate and Fe(NO3)3 has a red color, while the same enzyme purified from the same E. coli grown in minimal medium has no color. The red-colored enzyme has been characterized by mass, fluorescence, and EPR spectroscopies and X-ray crystallography. The enzyme is found to contain bound glutathione (GSH) and heme. GSH binds to the active site with six H-bonds, while a heme is complexed with bound GSH forming a S-Fe coordination bond with no polar interaction with mPGES-2. There is a large open space between the heme and the protein, where a PGH2 might be able to bind. The heme dissociation constant is 0.53 microM, indicating that mPGES-2 has relatively strong heme affinity. Indeed, expression of mPGES-2 in E. coli stimulates heme biosynthesis. Although mPGES-2 has been reported to be a GSH-independent PGES, the crystal structure and sequence analysis indicate that mPGES-2 is a GSH-binding protein. The GSH-heme complex-bound enzyme (mPGES-2h) catalyzes formation of 12(S)-hydroxy-5(Z),8(E),10(E)-heptadecatrienoic acid and malondialdehyde from PGH2, but not formation of PGE2. The following kinetic parameters at 37 degrees C were determined: KM = 56 microM, kcat = 63 s-1, and kcat/KM = 1.1 x 10(6) M-1 s-1. They suggest that mPGES-2h has significant catalytic activity for PGH2 degradation. It is possible that both GSH-heme complex-free and -bound enzymes are present in the same tissues. mPGES-2 in heme-rich liver is most likely to become the form of mPGES-2h and might be involved in degradation reactions similar to that of cytochrome P450. Since mPGES-2 is an isomerase and mPGES-2h is a lyase, mPGES-2 cannot simply be classified into one of six classes set by the International Union of Biochemistry and Molecular Biology.  相似文献   

20.
Amnion is believed to be a tissue of signal importance, anatomically and functionally, in the maintenance of pregnancy and during the initiation of parturition. Epidermal growth factor (EGF)-like agents cause a striking increase in the secretion of prostaglandin E2 (PGE2) in human amnion cells but only if arachidonic acid is present in the culture medium. To investigate the regulation of arachidonic acid metabolism by EGF-like agents in amnion, we used mEGF and human amnion cells in primary monolayer culture as a model system. The amount of PGE2 secreted into the culture medium was quantified by radioimmunoassay and the rate of conversion of [14C]arachidonic acid to [14C]PGE2 (PGH2 synthase activity) in cell sonicates was determined under optimal in vitro conditions. Treatment of amnion cells with mEGF led to a marked increase in the rate of production of PGE2. The specific activity of PGH2 synthase (viz. the combined activities of prostaglandin endoperoxide (PGH2) synthase and PGH2-PGE isomerase) was increased by 2-5-fold in cells treated with mEGF. Treatment of amnion cells with mEGF for 4 h did not affect the specific activities of phospholipase A2 or phosphatidylinositol-specific phospholipase C. By immunoisolation of newly synthesized, [35S]methionine-labeled PGH2 synthase, we found that mEGF stimulated de novo synthesis of the enzyme. Thus, mEGF acts in human amnion cells in primary monolayer culture to increase the rate of PGE2 biosynthesis by a mechanism that involves induction of PGH2 synthase; the manifestation of EGF action on PGE2 biosynthesis is dependent on the presence of nonesterified arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号