首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

2.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

3.
CITRATE AS THE PRECURSOR OF THE ACETYL MOIETY OF ACETYLCHOLINE   总被引:13,自引:12,他引:1  
Abstract— Rat brain cortex slices were incubated with glucose labeled with either 3H or 14C in the 6-position. The 3H/14C ratios and the incorporation of radioactivity into lactate, citrate, malate and acetylcholine were determined. While the 3H/14C ratio of lactate was close to that of glucose, the ratios in the acetyl moiety of acetylcholine and the acetyl (C-4,5) portion of citrate decreased in a similar proportion. This was interpreted as indirect evidence for the participation of citrate as a precursor to the acetyl moiety of acetylcholine. Two inhibitors of the citrate cleavage pathway: n -butylmalonate, an inhibitor of citrate transport and (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase were studied for their effect on acetylcholine synthesis. N -butylmalonate (10 mM) and (-)-hydroxycitrate (7.5 mM) led to a decrease in the per cent of 14C recovered as acetylcholine. In each instance the 3H/14C ratio in acetylcholine was higher in the presence of inhibitor while the corresponding ratios in lactate and citrate (C-4.5) remained unchanged. From the results, it is suggested that citrate is involved in the transport mechanism of acetyl units from its site of synthesis in mitochondria to the site of acetylcholine synthesis in the cytosol.  相似文献   

4.
β-Hydroxybutyrate as a Precursor to the Acetyl Moiety of Acetylcholine   总被引:3,自引:3,他引:0  
Abstract— Rat brain cortex slices were incubated with 10 mm -glucose and trace amounts of [6-3H]glucose and [3-14C]β-hydroxybutyrate. The effects of (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase; methylmalonate, an inhibitor of β-hydroxybutyrate dehydrogenase; and increasing concentrations of unlabeled acetoacetate were examined. The incorporation of label into lactate, citrate, malate, and acetylcholine (ACh) was measured and 3H:14C ratios calculated. Incorporation of [14C]β-hydroxybutyrate into lactate was limited because of the low activity of gluconeogenic enzymes in brain, whereas incorporation of 14C label into Krebs cycle intermediates and ACh was higher than in previous experiments with [3H-,14C]-glucose. (–)-Hydroxycitrate (5.0 mM) reduced incorporation of [3H]glucose and [14C]β-hydroxybutyrate into ACh. In contrast, slices incubated with methylmalonate (1 mm ) showed a decrease in 14C incorporation without appreciably affecting glucose metabolism. The effects of high concentrations of methylmalonate were nonselective and yielded a generalized decrease in metabolism. Acetoacetate (1 mm ) also produced a decreased 14C incorporation into ACh and its precursors. At 10 mm , acetoacetate reduced 3H and 14C incorporation into ACh without substantially affecting total ACh content. From the results, it is suggested that in adult rats β-hydroxybutyrate can contribute to the acetyl moiety of ACh, possibly via the citrate cleavage pathway, though it is quantitatively less important than glucose and pyruvate. This contribution of ketone bodies could become significant should their concentration become abnormally high or glucose metabolism be reduced.  相似文献   

5.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

6.
—A rapid accumulation of [3H]GABA occurs in slices of rat cerebral cortex incubated at 25° or 37° in a medium containing [3H]GABA. Tissue medium ratios of almost 100:1 are attained after a 60 min incubation at 25°. At the same temperature no labelled metabolites of GABA were found in the tissue or the medium. The process responsible for [3H]GABA uptake has many of the properties of an active transport mechanism: it is temperature sensitive, requires the presence of sodium ions in the external medium, is inhibited by dinitrophenol and ouabain, and shows saturation kinetics. The estimated Km value for GABA is 2·2 × 10?5m , and Vmax is 0·115 μmoles/min/g cortex. There is only negligible efflux of the accumulated [3H]GABA when cortical slices are exposed to a GABA-free medium. [3H]GABA uptake was not affected by the presence of large molar excesses of glycine, l -glutamic acid, l -aspartic acid, or β-aminobutyrate, but was inhibited in the presence of l -alanine, l -histidine, β-hydroxy-GABA and β-guanidinopropionate. It is suggested that the GABA uptake system may represent a possible mechanism for the inactivation of GABA or some related substance at inhibitory synapses in the cortex.  相似文献   

7.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

8.
—Slices of tissue of the electric organ of Torpedo marmorata were incubated in vitro in a salineurea-sucrose solution containing a labelled precursor of the acetyl moiety of ACh ([1-14C]glucose, [2-14C]pyruvate, or [1-14C]acetate) either alone or in the presence of another unlabelled precursor. The incorporation of 14C from [1-14C]acetate into ACh was considerably higher than from the other two substrates. The specific radioactivities (SRA) of the‘total',‘bound’and‘free’ACh were compared in experiments with [2-14C]pyruvate and [1-14C]acetate. With both precursors, the SRA of the‘bound’ACh were lower than those of‘total’ACh; consequently, the‘free’ACh pool was more labelled than the‘bound’pool. After short incubations with [2-14C]pyruvate the SRA of'bound’ACh were closer to the SRA of‘total’ACh than with [1-14C]acetate. A simple method is described for the labelling of ACh and its separation from other labelled compounds in experiments with the electric organ using [14C]acetate as the labelled precursor.  相似文献   

9.
Abstract– Various aspects of amino acid metabolism were studied in striatum of rats with unilateral, kainic acid-induced lesions. Tissue slices were prepared from the lesioned and the contralateral, unlesioned, striatum. The preparations were incubated with a mixture of d -[2-14C]glucose and [3H]acetate in a Krebs-Ringer bicarbonate medium to evaluate oxidative metabolism. Glutamate and aspartate levels were decreased in the slices prepared from the lesioned striata by 35-40% and that of GABA by 75% compared to the levels found in the slices from the contralateral striata; glutamine levels were not different in the two preparations. Glucose utilization was decreased 60% in the slices from the lesioned striatum; this was caused not only by decreased levels of glutamate, aspartate and GABA but also by a decreased rate of labelling of glutamate and aspartate. On the other hand, the metabolism of [3H]acetate was greatly increased. The specific activities of glutamate and aspartate were 4-5-fold higher in the slices from kainic acid-lesioned striata; those of glutamine and GABA were unchanged. Thus, there was a 6-7-fold increase in the ratio of 3H to 14C in the specific activities of glutamate, aspartate and GABA with no change in this ratio in glutamine. The labelling of glutamine relative to that of glutamate, especially from [3H]acetate, suggested that the compartmentation of the glutamate-glutamine system was greatly altered in the kainate-lesioned striatum which now more closely resembled a single compartment system. The activities of lactate dehydrogenase, glutamate dehydrogenase, GABA transaminase and ‘cytoplasmic’ aspartate aminotransferase were decreased in homogenates of lesioned striatum. Succinate dehydrogenase, glutaminase (phosphate-activated) and ‘mitochondrial’ aspartate aminotransferase activities were unchanged whilst that of glutamine synthetase was increased. The results are consistent with hypotheses concerning the assignment of labelled acetate metabolism to glial cells as well as the distribution of the above enzymes between glia, neurones and nerve endings.  相似文献   

10.
Sitosterol-4-14C-22,23-3H with a 3H/14C ratio of 5.0 was incorporated into diosgenin such that the 3H/14C ratio in diosgenin was approx. 2.3. The per cent of 14C incorporation was 0· and for 3H was 0·42%. The results indicate that C-23 is not involved in the transformation of sitosterol into diosgenin. The first step in the cyclization of the sterol side-chain may either involve oxygenation at C-26 or direct hydroxylation at C-22 via a mixed function oxidase system. Other indirect evidence suggests that the C-26 oxygenation mechanism is operative.  相似文献   

11.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

12.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

13.
—(1) Compartmentation of the metabolism of amino acids in brain has been studied in slices of cerebral cortex incubated with sodium [1-14C]acetate, sodium [1-14C]-bicarbonate, [1-14C]GABA or l-[1-14C]glutamate and in samples of brain after injection in vivo of [1-14C]- or [3H]acetate. (2) The method of treatment of the slices (a) maintained in ice-cold medium prior to incubation; (b) preincubation at 37°C and transfer to fresh medium affected the metabolism of the added, labelled substrate, particularly its labelling of glutamine. (3) The specific activity of glutamine labelled from the above metabolites was greater than that of glutamic acid in experiments of 10–30 minutes duration, whether or not subjected to pretreatment in the cold. (4) Incubation in medium containing 27 mm-K+ was associated with a decrease in the relative specific activity (RSA) of glutamine, except for the increase when l-[1-14C]glutamate was the precursor. (5) The data have been discussed in terms of metabolic compartmentation and their consistency with the concept of the presence in brain of more than one citric acid cycle, one containing the relatively smaller pools of intermediates and associated with synthetic processes; the other containing the relatively larger pools of intermediates and functioning as a homeostatic buffer for energy metabolism.  相似文献   

14.
Abstract: Cerebral pentose phosphate pathway (PPP) activity has been linked to NADPH-dependent anabolic pathways, turnover of neurotransmitters, and protection from oxidative stress. Research on this potentially important pathway has been hampered, however, because measurement of regional cerebral PPP activity in vivo has not been possible. Our efforts to address this need focused on the use of a novel isotopically substituted glucose molecule, [1,6-13C2,6,6-2H2]glucose, in conjunction with microdialysis techniques, to measure cerebral PPP activity in vivo, in freely moving rats. Metabolism of [1,6-13C2,6,6-2H2]glucose through glycolysis produces [3-13C]lactate and [3-13C,3,3-2H2]lactate, whereas metabolism through the PPP produces [3-13C,3,3-2H2]lactate and unlabeled lactate. The ratios of these lactate isotopomers can be quantified using gas chromatography/mass spectrometry (GC/MS) for calculation of PPP activity, which is reported as the percentage of glucose metabolized to lactate that passed through the PPP. Following addition of [1,6-13C2,6,6-2H2]glucose to the perfusate, labeled lactate was easily detectable in dialysate using GC/MS. Basal forebrain and intracerebral 9L glioma PPP values (mean ± SD) were 3.5 ± 0.4 (n = 4) and 6.2 ± 0.9% (n = 4), respectively. Furthermore, PPP activity could be stimulated in vivo by addition of phenazine methosulfate, an artificial electron acceptor for NADPH, to the perfusion stream. These results show that the activity of the PPP can now be measured dynamically and regionally in the brains of conscious animals in vivo.  相似文献   

15.
—Uptake of acetylcholine (ACh) in mouse brain cortex slices, previously shown with ACh synthesized from tritiated choline is confirmed with acetyl[1-14C]choline. Radioactivity from tritiated sodium acetate also accumulates in slices, but forms hardly any ACh. Uptake of ACh increases in a Ca2+-free medium, decreases again upon addition of a 3 × 105 molar concentration of an anticholinergic benzilate compound and is completely blocked by the same compound at 3 × 103 m. Slices preloaded with labelled ACh release, after extensive washing, some of their radioactivity into an outer medium free from ACh. Phospholipase, A or C, increases the release of radioactivity from the slices. An equilibrium is reached both with controls and phospholipase-treated slices. Remaining radioactivity seems to be due to bound ACh. Calcium and magnesium ions have no effect on the uptake of tritiated atropine, although low concentrations of Ca2+ decrease the effects of phospholipase C on atropine uptake. The inhibitory effect of K+ on atropine uptake disappears completely after treatment with small amounts of phospholipase A, but even high concentrations of phospholipase C have no effect.  相似文献   

16.
—The regulation of [14C]ACh synthesis was studied in rat striatal synaptosomes incubated in presence of various concentrations of Triton X-100, using [2-14C]pyruvate or [6-14C]glucose as precursors. The progressive rupture of the cytoplasmic and mitochondrial compartments induced by the non-ionic detergent was followed by studying the release, into the incubating medium, of lactate dehydrogenase and choline acetyltransferase (ChAc) and of fumarate hydratase, respectively. [3H]Choline uptake (1 μm ) was measured to determine the activity of the high affinity choline permease. 14CO2 formation from [2-14C]pyruvate was used as an index of the Krebs cycle activity. The rate of [14C]ACh synthesis from [2-14C] pyruvate was dependent on the Triton X-100 concentration; the ester formation decreased between 0·001% (v/v) and 0·010%, but increased again beyond this concentration of detergent. This last phenomenon was interpreted as the result of an extracellular synthesis of ACh involving pyruvate dehydrogenase and ChAc. At 0·002% Triton X-100 the 14CO2 formation was not affected, indicating a normal mitochondrial activity. The decrease of [14C]ACh synthesis observed up to this detergent concentration could be correlated to the decline of the highaffinity choline permease activity. In these experimental conditions, the ester synthesis could not be restored by the addition of large amounts of choline in the incubating medium suggesting that the molecules of choline must cross the high-affinity choline permease system in order to be acetylated. This could indicate a close association between the permease and choline acetyltransferase.  相似文献   

17.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

18.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   

19.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

20.
Abstract: The molecular basis of the close linkage between oxidative metabolism and acetylcholine (ACh) synthesis is still unclear. We studied this problem in slices and synaptosomes by measurement of ACh synthesis from [U-14C]glucose, and 14CO2 production from [3,4-14C]- and [2-14C]glucose, an index of glucose decarboxylation by the pyruvate dehydrogenase complex (PDH) and the enzymes of the Krebs cycle, respectively. We examined both under conditions that either inhibited (low O2 or antimycin) or stimulated (2,4- dinitrophenol [DNP] or 35 mm -K+) 14CO2 production from [2-14C]- or [3,4-14C]glucose. Incorporation of [U-14C]glucose into ACh was reduced under low O2 and by antimycin or DNP (by 51-93%) and stimulated by 35 mm -K+ (by 30-60%). Under all of these conditions, ACh synthesis and the decarboxylation of [3,4-14C]- and [2-14C]glucose were linearly related (r= 0.741 and 0.579, respectively). The difference in the rate of 14CO2 production from [3,4-14C]- and [2-14C]glucose was used as a measure of the amount of glucose that was not oxidatively decarboxylated (efflux). We found that efflux was reduced (low 02 and antimycin), unchanged (DNP in slices), or increased (DNP in synaptosomes and K+ stimulation in slices) compared with control values under 100% O2. ACh synthesis and efflux were more closely related (r= 0.860) than ACh synthesis and 14CO2 production from variously labeled glucoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号