首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confidence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.  相似文献   

2.
SUMMARY: We describe a tool, called aCGH-Smooth, for the automated identification of breakpoints and smoothing of microarray comparative genomic hybridization (array CGH) data. aCGH-Smooth is written in visual C++, has a user-friendly interface including a visualization of the results and user-defined parameters adapting the performance of data smoothing and breakpoint recognition. aCGH-Smooth can handle array-CGH data generated by all array-CGH platforms: BAC, PAC, cosmid, cDNA and oligo CGH arrays. The tool has been successfully applied to real-life data. AVAILABILITY: aCGH-Smooth is free for researchers at academic and non-profit institutions at http://www.few.vu.nl/~vumarray/.  相似文献   

3.
MOTIVATION: The identification of DNA copy number changes provides insights that may advance our understanding of initiation and progression of cancer. Array-based comparative genomic hybridization (array-CGH) has emerged as a technique allowing high-throughput genome-wide scanning for chromosomal aberrations. A number of statistical methods have been proposed for the analysis of array-CGH data. In this article, we consider a fused quantile regression model based on three motivations: (1) quantile regression may provide a more comprehensive picture for the ratio profile of copy numbers than the standard mean regression approach; (2) for simplicity, most available methods assume uniform spacing between neighboring clones, while incorporating the information of physical locations of clones may be helpful and (3) most current methods have a set of tuning parameters that must be carefully tuned, which introduces complexity to the implementation. RESULTS: We formulate the detection of regions of gains and losses in a fused regularized quantile regression framework, incorporating physical locations of clones. We derive an efficient algorithm that computes the entire solution path for the resulting optimization problem, and we propose a simple estimate for the complexity of the fitted model, which leads to convenient selection of the tuning parameter. Three published array-CGH datasets are used to demonstrate our approach. AVAILABILITY: R code are available at http://www.stat.lsa.umich.edu/~jizhu/code/cgh/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
Computation of recurrent minimal genomic alterations from array-CGH data   总被引:4,自引:0,他引:4  
MOTIVATION: The identification of recurrent genomic alterations can provide insight into the initiation and progression of genetic diseases, such as cancer. Array-CGH can identify chromosomal regions that have been gained or lost, with a resolution of approximately 1 mb, for the cutting-edge techniques. The extraction of discrete profiles from raw array-CGH data has been studied extensively, but subsequent steps in the analysis require flexible, efficient algorithms, particularly if the number of available profiles exceeds a few tens or the number of array probes exceeds a few thousands. RESULTS: We propose two algorithms for computing minimal and minimal constrained regions of gain and loss from discretized CGH profiles. The second of these algorithms can handle additional constraints describing relevant regions of copy number change. We have validated these algorithms on two public array-CGH datasets. AVAILABILITY: From the authors, upon request. CONTACT: celine@lri.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

5.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

6.
SUMMARY: We present a tool for control-free copy number alteration (CNA) detection using deep-sequencing data, particularly useful for cancer studies. The tool deals with two frequent problems in the analysis of cancer deep-sequencing data: absence of control sample and possible polyploidy of cancer cells. FREEC (control-FREE Copy number caller) automatically normalizes and segments copy number profiles (CNPs) and calls CNAs. If ploidy is known, FREEC assigns absolute copy number to each predicted CNA. To normalize raw CNPs, the user can provide a control dataset if available; otherwise GC content is used. We demonstrate that for Illumina single-end, mate-pair or paired-end sequencing, GC-contentr normalization provides smooth profiles that can be further segmented and analyzed in order to predict CNAs. AVAILABILITY: Source code and sample data are available at http://bioinfo-out.curie.fr/projects/freec/.  相似文献   

7.
Denoising array-based comparative genomic hybridization data using wavelets   总被引:8,自引:0,他引:8  
Array-based comparative genomic hybridization (array-CGH) provides a high-throughput, high-resolution method to measure relative changes in DNA copy number simultaneously at thousands of genomic loci. Typically, these measurements are reported and displayed linearly on chromosome maps, and gains and losses are detected as deviations from normal diploid cells. We propose that one may consider denoising the data to uncover the true copy number changes before drawing inferences on the patterns of aberrations in the samples. Nonparametric techniques are particularly suitable for data denoising as they do not impose a parametric model in finding structures in the data. In this paper, we employ wavelets to denoise the data as wavelets have sound theoretical properties and a fast computational algorithm, and are particularly well suited for handling the abrupt changes seen in array-CGH data. A simulation study shows that denoising data prior to testing can achieve greater power in detecting the aberrant spot than using the raw data without denoising. Finally, we illustrate the method on two array-CGH data sets.  相似文献   

8.

Background  

Array-based comparative genomic hybridization (array-CGH) is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments.  相似文献   

9.
SUMMARY: Data processing, analysis and visualization (datPAV) is an exploratory tool that allows experimentalist to quickly assess the general characteristics of the data. This platform-independent software is designed as a generic tool to process and visualize data matrices. This tool explores organization of the data, detect errors and support basic statistical analyses. Processed data can be reused whereby different step-by-step data processing/analysis workflows can be created to carry out detailed investigation. The visualization option provides publication-ready graphics. Applications of this tool are demonstrated at the web site for three cases of metabolomics, environmental and hydrodynamic data analysis. AVAILABILITY: datPAV is available free for academic use at http://www.sdwa.nus.edu.sg/datPAV/.  相似文献   

10.
CGH-Explorer: a program for analysis of array-CGH data   总被引:7,自引:0,他引:7  
SUMMARY: CGH-Explorer is a program for visualization and statistical analysis of microarray-based comparative genomic hybridization (array-CGH) data. The program has preprocessing facilities, tools for graphical exploration of individual arrays or groups of arrays, and tools for statistical identification of regions of amplification and deletion.  相似文献   

11.
12.
It is estimated that 10–15 % of all clinically recognised pregnancies results in a miscarriage, most of which occur during the first trimester. Large-scale chromosomal abnormalities have been found in up to 50 % of first-trimester spontaneous abortions and, for several decades, standard cytogenetic analysis has been used for their identification. Recent studies have proven that array comparative genomic hybridisation (array-CGH) is a useful tool for the detection of genome imbalances in miscarriages, showing a higher resolution, a significantly higher detection rate and overcoming problems of culture failures, maternal contamination and poor chromosome morphology. In this study, we investigated the possibility that submicroscopic chromosomal changes, not detectable by conventional cytogenetic analysis, exist in euploid miscarriages and could be causative for the spontaneous abortion. We analysed with array-CGH technology 40 foetal tissue samples derived by first-trimester miscarriages with a normal karyotype. A whole-genome microarray with a 100-Kb resolution was used for the analysis. Forty-five copy number variants (CNVs), ranging in size between 120 Kb and 4.3 Mb, were identified in 31 samples (24 gains and 21 losses). Ten samples (10/31, 32 %) have more than one CNV. Thirty-one CNVs (68 %) were defined as common CNVs and 14 were classified as unique. Six genes and five microRNAs contained within these CNVs will be discussed. This study shows that array-CGH is useful for detecting submicroscopic CNVs and identifying candidate genes which could account for euploid miscarriages.  相似文献   

13.
Genome alteration signatures reflect recurring patterns caused by distinct endogenous or exogenous mutational events during the evolution of cancer. Signatures of single base substitution (SBS) have been extensively studied in different types of cancer. Copy number alterations are important drivers for the progression of multiple cancer. However, practical tools for studying the signatures of copy number alterations are still lacking. Here, a user-friendly open source bioinformatics tool “sigminer” has been constructed for copy number signature extraction, analysis and visualization. This tool has been applied in prostate cancer (PC), which is particularly driven by complex genome alterations. Five copy number signatures are identified from human PC genome with this tool. The underlying mutational processes for each copy number signature have been illustrated. Sample clustering based on copy number signature exposure reveals considerable heterogeneity of PC, and copy number signatures show improved PC clinical outcome association when compared with SBS signatures. This copy number signature analysis in PC provides distinct insight into the etiology of PC, and potential biomarkers for PC stratification and prognosis.  相似文献   

14.
BACKGROUND: Whole genome amplification (WGA) is usually needed in the genetic analysis of samples containing a low number of cells. In genome-wide analysis of DNA copy numbers by array comparative genomic hybridization (array-CGH) it is very important that the genome is evenly represented throughout the amplified product. All currently available WGA techniques are generating some degree of bias. METHODS: A way to compensate for this is using a reference sample which is similarly amplified, as the introduced amplification bias will be leveled out. Additionally, direct labeling of the amplified DNA is performed to bypass the currently widely applied random primed labeling, which involves an additional amplification of the product and is introducing extra bias. RESULTS: In this article it is shown that equal processing of the test and reference sample is indeed crucial to generate an optimal array-CGH profile of amplified DNA samples. Also presented here is that the labeling method may significantly effect the array-CGH result, it is shown that with direct chemical labeling using platinum derivates (ULS labeling) optimal array-CGH results are obtained. CONCLUSIONS: We show that an optimized WGA strategy for both test and reference sample in combination with direct chemical labeling results in a reliable array-CGH profile of samples as low as a 30 cell equivalent.  相似文献   

15.
We describe a bioinformatic tool, Tumor Aberration Prediction Suite (TAPS), for the identification of allele-specific copy numbers in tumor samples using data from Affymetrix SNP arrays. It includes detailed visualization of genomic segment characteristics and iterative pattern recognition for copy number identification, and does not require patient-matched normal samples. TAPS can be used to identify chromosomal aberrations with high sensitivity even when the proportion of tumor cells is as low as 30%. Analysis of cancer samples indicates that TAPS is well suited to investigate samples with aneuploidy and tumor heterogeneity, which is commonly found in many types of solid tumors.  相似文献   

16.
We describe a bioinformatic tool, Tumor Aberration Prediction Suite (TAPS), for the identification of allele-specific copy numbers in tumor samples using data from Affymetrix SNP arrays. It includes detailed visualization of genomic segment characteristics and iterative pattern recognition for copy number identification, and does not require patient-matched normal samples. TAPS can be used to identify chromosomal aberrations with high sensitivity even when the proportion of tumor cells is as low as 30%. Analysis of cancer samples indicates that TAPS is well suited to investigate samples with aneuploidy and tumor heterogeneity, which is commonly found in many types of solid tumors.  相似文献   

17.

Background

Genomic copy number alterations are widely associated with a broad range of human tumors and offer the potential to be used as a diagnostic tool. Especially in the emerging era of personalized medicine medical informatics tools that allow the fast visualization and analysis of genomic alterations of a patient's genomic profile for diagnostic and potential treatment purposes increasingly gain importance.

Results

We developed CNAReporter, a software tool that allows users to visualize SNP-specific data obtained from Affymetrix arrays and generate PDF-reports as output. We combined standard algorithms for the analysis of chromosomal alterations, utilizing the widely applied GenePattern framework. As an example, we show genome analyses of two patients with distinctly different CNA profiles using the tool.

Conclusions

Glioma subtypes, characterized by different genomic alterations, are often treated differently but can be difficult to differentiate pathologically. CNAReporter offers a user-friendly way to visualize and analyse genomic changes of any given tumor genomic profile, thereby leading to an accurate diagnosis and patient-specific treatment.  相似文献   

18.
Genomic microarrays in the spotlight   总被引:18,自引:0,他引:18  
Microarray-based comparative genomic hybridization (array-CGH) has emerged as a revolutionary platform, enabling the high-resolution detection of DNA copy number aberrations. In this article we outline the use and limitations of genomic clones, cDNA clones and PCR products as targets for genomic microarray construction. Furthermore, the applications and future aspects of these arrays for DNA copy number analysis in research and diagnostics, epigenetic profiling and gene annotation are discussed. These recent developments of genomic microarrays mark only the beginning of a new generation of high-resolution and high-throughput tools for genetic analysis.  相似文献   

19.
MOTIVATION: Increasing complexity of cell signaling network maps requires sophisticated visualization technologies. Simple web-based visualization tools can allow for improved data presentation and collaboration. Researchers studying cell signaling would benefit from having the ability to embed dynamic cell signaling maps in web pages. SUMMARY: AVIS is a Google gadget compatible web-based viewer of interactive cell signaling networks. AVIS is an implementation of AJAX (Asynchronous JavaScript with XML) with the usage of the libraries GraphViz, ImageMagic (PerlMagic) and overLib. AVIS provides web-based visualization of text-based signaling networks with dynamical zooming, panning and linking capabilities. AVIS is a cross-platform web-based tool that can be used to visualize network maps as embedded objects in any web page. AVIS was implemented for visualization of PathwayGenerator, a tool that displays over 4000 automatically generated mammalian cell signaling maps; NodeNeighborhood a tool to visualize first and second interacting neighbors of yeast and mammalian proteins; and for Genes2Networks, a tool to connect lists of genes and protein using background protein interaction networks. AVAILABILITY: A demo page of AVIS and links to applications and distributions can be found at http://actin.pharm.mssm.edu/AVIS2. Detailed instructions for using and configuring AVIS can be found in the user manual at http://actin.pharm.mssm.edu/AVIS2/manual.pdf.  相似文献   

20.
Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号