首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Low-copy-number plasmids, such as P1 prophage and the fertility factor F, require a plasmid-encoded replication protein and several host products for replication. Stable maintenance also depends on active partitioning of plasmids into daughter cells. Mini-P1 par+ and par plasmids were found to be destabilized by mutations in the dnaJ, dnaK, and grpE genes of Escherichia coli. The transformation efficiency and stability of mini-F plasmids were also reduced in the mutant strains. These results indicate that heat shock proteins DnaJ, DnaK, and GrpE play roles in the replication of plasmid P1 and probably also in of F.  相似文献   

4.
ClpB and DnaK form a bi-chaperone system that reactivates strongly aggregated proteins in vivo and in vitro. Previously observed interaction between purified ClpB and DnaK suggested that one of the chaperones might recruit its partner during substrate reactivation. We show that ClpB from Escherichia coli binds at the substrate binding site of DnaK and the interaction is supported by the N-terminal domain and the middle domain of ClpB. Moreover, the interaction between ClpB and DnaK depends on the nucleotide-state of DnaK: it is stimulated by ADP and inhibited by ATP. These observations indicate that DnaK recognizes selected structural motifs in ClpB as "pseudo-substrates" and that ClpB may compete with bona fide substrates of DnaK. We conclude that direct interaction between ClpB and DnaK does not mediate a substrate transfer between the chaperones, it may, however, play a role in the recruitment of the bi-chaperone system to specific recognition sites in aggregated particles.  相似文献   

5.
We describe importance of the characteristic segment in ATPase domain of DnaK chaperone which is present in all gram-negative bacteria but is absent in all gram-positive bacteria. In vitro studies, ATPase activity, luciferase-refolding activity, and surface plasmon resonance analyses, demonstrated that a segment-deletion mutant DnaKDelta74-96 became defective in the cooperation with the co-chaperones DnaJ and GrpE. In addition, in vivo complementation assay showed that expression of DnaKDelta74-96 could not rescue the viability of Escherichia coli DeltadnaK mutant at 43 degrees C. Consequently, we suggest evolutionary significance for this DnaK ATPase domain segment in gram-negative bacteria towards the DnaK chaperone system.  相似文献   

6.
7.
8.
P Blum  J Ory  J Bauernfeind    J Krska 《Journal of bacteriology》1992,174(22):7436-7444
The physiological consequences of molecular chaperone overproduction in Escherichia coli are presented. Constitutive overproduction of DnaK from a multicopy plasmid containing large chromosomal fragments spanning the dnaK region resulted in plasmid instability. Co-overproduction of DnaJ with DnaK stabilized plasmid levels. To examine the effects of altered levels of DnaK and DnaJ in a more specific manner, an inducible expression system for dnaK and dnaJ was constructed and characterized. Differential rates of DnaK synthesis were determined by quantitative Western blot (immunoblot) analysis. Moderate levels of DnaK overproduction resulted in a defect in cell septation and formation of cell filaments, but co-overproduction of DnaJ overcame this effect. Further increases in the level of DnaK terminated culture growth despite increased levels of DnaJ. DnaK overproduction was found to be bacteriocidal, and this effect was also partially suppressed by DnaJ. The bacteriocidal effect was apparent only with cultures which were allowed to enter stationary phase, indicating that DnaK toxicity is growth phase dependent.  相似文献   

9.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

10.
The replicon of the low copy number plasmid P1 uses the three Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE for the efficient initiation of its DNA replication. The only P1-encoded protein required for plasmid replication is the initiator, RepA. Binding of RepA to the origin also represses the promoter for the repA gene, which is located within the origin. We found that repression is incomplete in E. coli strains with mutations in the dnaJ, dnaK, or grpE genes. Since there is no decrease in RepA concentration in the mutant strains, the mutations are likely to affect the protein-DNA or protein-protein reactions required for repression, thereby decreasing RepA binding at its promoter. We also showed that the deficit in repression can be overcome by providing excess RepA, implying that the mechanism of repression is not altered in the mutant strains. Since repression requires RepA binding to the origin, a binding deficit might account for the replication defect in the heat shock mutants.  相似文献   

11.
We systematically analyzed the capability of the major cytosolic chaperones of Escherichia coli to cope with protein misfolding and aggregation during heat stress in vivo and in cell extracts. Under physiological heat stress conditions, only the DnaK system efficiently prevented the aggregation of thermolabile proteins, a surprisingly high number of 150-200 species, corresponding to 15-25% of detected proteins. Identification of thermolabile DnaK substrates by mass spectrometry revealed that they comprise 80% of the large (>/=90 kDa) but only 18% of the small (相似文献   

12.
13.
Small heat shock proteins (sHsps) can efficiently prevent the aggregation of unfolded proteins in vitro. However, how this in vitro activity translates to function in vivo is poorly understood. We demonstrate that sHsps of Escherichia coli, IbpA and IbpB, co-operate with ClpB and the DnaK system in vitro and in vivo, forming a functional triade of chaperones. IbpA/IbpB and ClpB support independently and co-operatively the DnaK system in reversing protein aggregation. A delta ibpAB delta clpB double mutant exhibits strongly increased protein aggregation at 42 degrees C compared with the single mutants. sHsp and ClpB function become essential for cell viability at 37 degrees C if DnaK levels are reduced. The DnaK requirement for growth is increasingly higher for delta ibpAB, delta clpB, and the double delta ibpAB delta clpB mutant cells, establishing the positions of sHsps and ClpB in this chaperone triade.  相似文献   

14.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

15.
Previous studies have demonstrated that the Escherichia coli dnaK and grpE genes code for heat shock proteins. Both the Dnak and GrpE proteins are necessary for bacteriophage lambda DNA replication and for E. coli growth at all temperatures. Through a series of genetic and biochemical experiments, we have shown that these heat shock proteins functionally interact both in vivo and in vitro. The genetic evidence is based on the isolation of mutations in the dnaK gene, such as dnaK9 and dnaK90, which suppress the Tr- phenotype of bacteria carrying the grpE280 mutation. Coimmunoprecipitation of DnaK+ and GrpE+ proteins from cell lysates with anti-DnaK antibodies demonstrated their interaction in vitro. In addition, the DnaK756 and GrpE280 mutant proteins did not coimmunoprecipitate efficiently with the GrpE+ and DnaK+ proteins, respectively, suggesting that interaction between the DnaK and GrpE proteins is necessary for E. coli growth, at least at temperatures above 43 degrees C. Using this assay, we found that one of the dnaK suppressor mutations, dnaK9, reinstated a protein-protein interaction between the suppressor DnaK9 and GrpE280 proteins.  相似文献   

16.
K Tilly 《Journal of bacteriology》1991,173(20):6639-6642
The chromosome of the temperate bacteriophage N15 replicates as a linear plasmid with covalently closed ends (or hairpins) when it forms a lysogen. I found that, in contrast to the cases for lambda and the low-copy-number plasmids F and P1, both phage and plasmid replication of N15 are independent of the heat shock proteins DnaJ, DnaK, and GrpE.  相似文献   

17.
A human homologue of the Escherichia coli DnaJ heat-shock protein.   总被引:9,自引:1,他引:8  
  相似文献   

18.
19.
Summary A subset of Escherichia coli heat shock proteins, DnaK, DnaJ and GrpE were shown to be required for replication of mini-F plasmid. Strains of E. coli K12 carrying a missense mutation or deletion in the dnaK, dnaJ, or grpE gene were virtually unable to be transformed by mini-F DNA at the temperature (30° C) that permits cell growth. When excess amounts of the replication initiator protein (repE gene product) of mini-F were provided by means of a multicopy plasmid carrying repE, these mutant bacteria became capable of supporting mini-F replication under the same conditions. However, the copy number of a high copy number mini-F plasmid was reduced in these mutant bacteria as compared with the wild type in the presence of excess RepE protein. Furthermore, mini-F plasmid mutants that produce altered initiator protein and exhibit a very high copy number were able to replicate in strains deficient in any of the above heat shock proteins. These results indicate that the subset of heat shock proteins (DnaK, DnaJ and GrpE) play essential roles that help the functioning of the RepE initiator protein in mini-F DNA replication.  相似文献   

20.
The secondary structures of DnaK and the mutant DnaK756 heat-shock proteins from Escherichia coli have been investigated by Fourier transform infrared spectroscopy. The analysis of infrared data showed that DnaK and DnaK756 proteins have different secondary structures that are not affected by the presence of ATP or beta, gamma-methyleneadenosine 5'-triphosphate. The infrared data indicate also that the tertiary structures of DnaK and DnaK756 proteins are different and that DnaK protein undergoes conformational changes in its tertiary structure not only during binding of ATP but also during ATP hydrolysis. Using fluorescence spectroscopy of a single tryptophan located in the N-terminal domain of DnaK protein and fluorescence of 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid, which interacts with hydrophobic domains of DnaK protein, we were able to distinguish between two conformational states of DnaK protein. After binding of triphosphonucleotides, the C-terminal domain of DnaK protein changes in tertiary structure in such a way that fewer hydrophobic segments are exposed on the surface of the protein. After ATP hydrolysis, the number of hydrophobic segments on the surface of the protein is further reduced, and moreover the tertiary structure of the N-terminal domain of the protein changes. These data are discussed in terms of structural and functional relationships of both DnaK and DnaK756 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号