首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Bovine procarboxypeptidase A exhibits intrinsic hydrolytic activity toward haloacyl amino acids (Behnke and Vallee, 1972), as well as toward conventional peptide and ester substrates for carboxypeptidase A (Bezzone, 1974; Uren and Neurath, 1974). The kinetics of hydrolysis of a series of such substrates by native procarboxypeptidase has now been examined in detail in order to ascertain the extent to which the binding and catalytic sites of carboxypeptidase preexist inthe zymogen. Distinct differences in the substrate binding sites of the zymogen compared with the enzyme are apparent from their respective kinetic profiles as well as from the effects of modifiers on their activities. Substrate activation with the dipeptides BzGly-L-Phe and CbzGly-L-Phe, well known for carboxypeptidase, is exhibited also by the zymogen, but the corresponding substrate inhibition by CbzGly-L-Phe and BzGly-Ophe is absent. Moreover, the substrate inhibition of carboxypeptidase by CbzGlyGly-L-Phe and BzGly-Ophe is replaced by substrate activation in the zymogen...  相似文献   

2.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

3.
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.  相似文献   

4.
N Frankenberg  D Jahn  E K Jaffe 《Biochemistry》1999,38(42):13976-13982
Porphobilinogen synthases (PBGS) are metalloenzymes that catalyze the first common step in tetrapyrrole biosynthesis. The PBGS enzymes have previously been categorized into four types (I-IV) by the number of Zn(2+) and/or Mg(2+) utilized at three different metal binding sites termed A, B, and C. In this study Pseudomonas aeruginosa PBGS is found to bind only four Mg(2+) per octamer as determined by atomic absorption spectroscopy, in the presence or absence of substrate/product. This is the lowest number of bound metal ions yet found for PBGS where other enzymes bind 8-16 divalent ions. These four Mg(2+) allosterically stimulate a metal ion independent catalytic activity, in a fashion dependent upon both pH and K(+). The allosteric Mg(2+) of PBGS is located in metal binding site C, which is outside the active site. No evidence is found for metal binding to the potential high-affinity active site metal binding sites A and/or B. P. aeruginosa PBGS was investigated using Mn(2+) as an EPR probe for Mg(2+), and the active site was investigated using [3,5-(13)C]porphobilinogen as an NMR probe. The magnetic resonance data exclude the direct involvement of Mg(2+) in substrate binding and product formation. The combined data suggest that P. aeruginosa PBGS represents a new type V enzyme. Type V PBGS has the remarkable ability to synthesize porphobilinogen in a metal ion independent fashion. The total metal ion stoichiometry of only 4 per octamer suggests half-sites reactivity.  相似文献   

5.
A D Sherry  A D Newman  C G Gutz 《Biochemistry》1975,14(10):2191-2196
Divalent cadmium and lead and the trivalent lanthanides bind in the trasition metal site (S1) of concamavanlin A and induce saccharide binding to the protein in the presence of calcium. Partial activation of the protein in the presence of lanthanides alone indicates these ions bind into both transition metal (S1) and calcium sites (S2). The activity of a lanthanide-protein derivative may be increased by the addition of either calcium or a transition metal ion. The saccharide binding activity decreases in the order Zn2+ is greater than Ni2+ is greater than Co2+ is greater than Mn2+ is greater than Cd2+ reflecting the order of binding constants for these ions in the transition metal site. Like the lanthanides, divalent cadmium substitutes for both the transition metal ion and calcium ion to partially activate the protein. Divalent lead substitutes only for the transition metal ion and partially activates the protein upon addingcalcium. The data are consistent with a model in which saccharide binding activity is independent of the metal size in S1 but critically dependent upon metal size in S2.  相似文献   

6.
The proteolytic processing of pancreatic procarboxypeptidase B to a mature and functional enzyme is much faster than that of procarboxypeptidase A1. This different behavior has been proposed to depend on specific conformational features at the region that connects the globular domain of the pro-segment to the enzyme and at the contacting surfaces on both moieties. A cDNA coding for porcine procarboxypeptidase B was cloned, sequenced, and expressed at high yield (250 mg/liter) in the methylotrophic yeast Pichia pastoris. To test the previous hypothesis, different mutants of the pro-segment at the putative tryptic targets in its connecting region and at some of the residues contacting the active enzyme were obtained. Moreover, the complete connecting region was replaced by the homologous sequence in procarboxypeptidase A1. The detailed study of the tryptic processing of the mutants shows that limited proteolysis of procarboxypeptidase B is a very specific process, as Arg-95 is the only residue accessible to tryptic attack in the proenzyme. A fast destabilization of the connecting region after the first tryptic cut allows subsequent proteolytic processing and the expression of carboxypeptidase B activity. Although all pancreatic procarboxypeptidases have a preformed active site, only the A forms show intrinsic activity. Mutational substitution of Asp-41 in the globular activation domain, located at the interface with the enzyme moiety, as well as removal of the adjacent 310 helix allow the appearance of residual activity in the mutated procarboxypeptidase B, indicating that the interaction of both structural elements with the enzyme moiety prevents the binding of substrates and promotes enzyme inhibition. In addition, the poor heterologous expression of such mutants indicates that the mutated region is important for the folding of the whole proenzyme.  相似文献   

7.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

8.
The three-dimensional structure of human procarboxypeptidase A2 has been determined using X-ray crystallography at 1.8 A resolution. This is the first detailed structural report of a human pancreatic carboxypeptidase and of its zymogen. Human procarboxypeptidase A2 is formed by a pro-segment of 96 residues, which inhibits the enzyme, and a carboxypeptidase moiety of 305 residues. The pro-enzyme maintains the general fold when compared with other non-human counterparts. The globular part of the pro-segment docks into the enzyme moiety and shields the S2-S4 substrate binding sites, promoting inhibition. Interestingly, important differences are found in the pro-segment which allow the identification of the structural determinants of the diverse activation behaviours of procarboxypeptidases A1, B and A2, particularly of the latter. The benzylsuccinic inhibitor is able to diffuse into the active site of procarboxypeptidase A2 in the crystals. The structure of the zymogen-inhibitor complex has been solved at 2.2 A resolution. The inhibitor enters the active site through a channel formed at the interface between the pro-segment and the enzyme regions and interacts with important elements of the active site. The derived structural features explain the intrinsic activity of A1/A2 pro-enzymes for small substrates.  相似文献   

9.
Arginase from Saccharomyces cerevisiae has long been known to be a metal ion-requiring enzyme as it requires heating at 45 degrees C in the presence of 10 mM Mn2+ for catalytic activation. Metals are also thought to play a structural role in the enzyme, but the identity of the structural metal and its precise structural role have not been defined. Analysis of the metal ions that bind to yeast arginase by atomic absorption spectroscopy reveals that there is a weakly associated Mn2+ that binds to the trimeric enzyme with a stoichiometry of 1.04 +/- 0.05 mol of Mn2+ bound per subunit and an apparent K'D value of 26 microM at pH 7.0 and 4 degrees C. A more tightly associated Zn2+ ion can only be removed by dialysis against chelating agents. In occasional preparations, this site contained some Mn2+; however, Zn2+ and Mn2+ together bind to high affinity sites with a stoichiometry of 1.14 +/- 0.25/mol of subunit. Both the loosely associated catalytic Mn2+ ion and the more tightly associated structural Zn2+ ion confer stability to the enzyme. Removal of the weakly bound Mn2+ ion results in a 3 degree C decrease in the midpoint of the thermal transition (T 1/2) (from 57 by 54 degrees C) as monitored by UV difference absorption spectroscopy. Removal of the tightly bound Zn2+ ion produces a 19 degrees C decrease in T 1/2 (to 38 degrees C). Similar results are obtained by circular dichroism measurements. When the Zn2+ ion is removed, the steady-state fluorescence intensity increases 100% as compared to the holoenzyme, with a shift in the emission maximum from 337 to 352 nm. This suggests that in the folded trimeric metalloenzyme, the tryptophan fluorescence is quenched and that upon removal of the structural metal, the quenching is relieved as tryptophan residues become exposed to more polar environments. Equilibrium sedimentation experiments performed after dialysis of the enzyme against EDTA demonstrate that arginase exists in a reversible monomer-trimer equilibrium, in the absence of metal ions, with a KD value of 5.05 x 10(-11) M2. In contrast, the native enzyme exists as a trimer with no evidence of dissociation when Mn2+ and Zn2+ are present (Eisenstein, E., Duong, L.T., Ornberg, R. L., Osborne, J.C., Jr., and Hensley, P. (1986) J. Biol. Chem. 261, 12814-12819). In summary, the study presented here demonstrates that binding of a weakly bound Mn2+ ion confers catalytic activity. In contrast, binding of a more tightly associated Zn2+ ion confers substantial stability to the tertiary and quaternary structure of the enzyme.  相似文献   

10.
The LAGLIDADG homing endonucleases include free-standing homodimers, pseudosymmetric monomers, and related enzyme domains embedded within inteins. DNA-bound structures of homodimeric I-CreI and monomeric I-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These structures differ in the precise position and binding interactions of the metals. We have studied the metal dependence for the I-CreI homodimer using site-directed mutagenesis of active site residues and assays of binding affinity and cleavage activity. We have also reassessed the binding of a nonactivating metal ion (calcium) in the wild-type enzyme-substrate complex, and determined the DNA-bound structure of two inactive enzyme mutants. The conclusion of these studies is that the catalytic mechanism of symmetric LAGLIDADG homing endonucleases, and probably many of their monomeric cousins, involves a canonical two-metal mechanism in each of two active sites, which are chemically and structurally tethered to one another by a shared metal ion. Failure to occupy the shared metal site, as observed in the presence of calcium or when the metal-binding side chain from the LAGLIDADG motif (Asp 20) is mutated to asparagine, prevents cleavage by the enzyme.  相似文献   

11.
The separate interaction of the substrate fructose 1,6-bisphosphate and a metal ion cofactor Mn2+ with neutral hexosebisphosphatase has been studied under equilibrium conditions at pH 7.5 with gel filtration and electron paramagnetic resonance measurements, respectively. Binding data for both ligands to the enzyme yielded nonlinear Scatchard plots that analyze in terms of four negatively cooperative binding sites per enzyme tetramer. Graphical estimates of the binding constants were refined by a computer searching procedure and nonlinear least squares analysis. These results are qualitatively similar to those obtained from binding studies involving teh alkaline enzyme, a modified form of hexosebisphosphatase whose pH optimum is in the alkaline pH region. Both forms of the enzyme enhance the proton relaxation rate of water protons by a factor of approximately 7 to 8 at 24 MHz, demonstrating similar metal ion environments. Teh activator Co(III)-EDTA did not affect Mn2+ binding to the neutral enzyme. In the presence of (alpha + beta)methyl-D-fructofuranoside 1,6-bisphosphate, however, two sets--each containing four Mn2+ binding sites--were observed per enzyme tetramer with loss of the negatively cooperative interaction. These results are viewed in terms of four noncatalytic and four catalytic Mn2+ binding sites. Parallel kinetic investigations were conducted on the neutral enzyme to determine specific activity as a function of Mn2+ and fructose 1,6-bisphosphate concentration. A pro-equilibrium sequential pathway model involving Mn2+-enzyme and the Mn2+-fructose 1,6-bisphosphate complex both as substrate and as an allosteric inhibitor satisfactorily fit the kinetic observations. All possible enzyme species were computed from the determined binding constants and grouped according to the number of moles of Mn2+-fructose 1,6-bisphosphate complex bound to the Mn2+-enzyme, and individual rate constants were calculated. The testing of other models and their failure to describe the kinetic observations are discussed.  相似文献   

12.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

13.
Certain divalent cations can inhibit yeast enolase by binding at sites that are distinct from those metal binding sites normally associated with catalytic activity, i.e., the conformational and catalytic binding sites. By using a buffer that does not compete with metal ions (tetrapropylammonium borate) Zn, Co, Mn, Cu, Cd, and Ni are found to exhibit similar inhibitory characteristics. Inhibition by those metals is alleviated by the addition of imidazole or tris buffer and, for zinc, by a metal chelating agent (Calcein). Inhibition by zinc was examined in detail through binding studies and enzymatic activity measurement. In tetrapropylammonium buffers at pH 8.0, enolase binds up to four moles of zinc per mole of enzyme (two moles per subunit). An imidazole concentration of 0.05 M reduces the binding: in the absence of substrate, just two moles of zinc per enzyme are bound. The enzyme will bind two additional moles of zinc upon the addition of substrate in either buffer, but the enzyme in tetrapropylammonium buffer is nearly inactive. Inhibition is, therefore, correlated with the binding of two moles of zinc per mole of enzyme. Some additional metal ions, Ca, Tb, Hg, and Ag also caused inhibition of yeast enolase but not by binding to the inhibitory site described.  相似文献   

14.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2968-2975
A study of the equilibrium binding of ADP, 1,N6-ethenoadenosine diphosphate, adenylyl imidodiphosphate, and 1,N6-ethenoadenylyl imidodiphosphate to solubilized spinach chloroplast coupling factor 1 (CF1) has been carried out. All four nucleotides were found to bind to two apparently identical "tight" sites, with characteristic dissociation contants generally less than 10 muM. The binding to these "tight" sites is similar in the presence of Mg2+ and Ca2+, is stronger in 0.1 M NaC1 than in 20 mM Tris-C1, and is only slightly altered by heat activation. The slow rate of association of ADP and 1,N6-ethenoadenosine diphosphate at these sites rules out the possibility that they are catalytic sites for ATPase activity on the solubilized enzyme. A third tight site for adenylyl imidodiphosphate was found on the heat-activated enzyme. The dissociation constant for this interaction (7.6 muM) is similar to the adenylyl imidodiphosphate competitive inhibition constant for ATPase activity (4 muM). ADP, which inhibits ATPase activity but is not a strong competitive inhibitor, binds only weakly at a third site (dissociation constant greater than 70 muM). One mole of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted per mole of CF1 prevents ADP and adenylyl imidodiphosphate binding at the "catalytic" site and abolishes the ATPase activity. A model is proposed in which the "tight" nucleotide binding sites act as allosteric conformational switches for the ATPase activity of solubilizedCF1.  相似文献   

15.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

16.
The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance kcat values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   

17.
The complex between active site-specific metal-depleted horse liver alcohol dehydrogenase and NADH has been studied with X-ray crystallographic methods to 2.9 A resolution. The electron density maps revealed that only the catalytic zinc ions are removed, whereas the non-catalytic zinc sites ae fully occupied. A gross conformational change in the protein induced by co-enzyme binding takes place in this enzyme species despite the absence of the metal ion in the catalytic center. This circumstance is of great importance in the understanding and further analysis of the trigger mechanisms operating during the conformation transition in alcohol dehydrogenase, since the catalytic center is located at the hinge region for a domain rotation in the subunit, and the metal atom is essential for catalysis. The overall protein structure is the same as that of an NADH complex of the native zinc enzyme and the co-enzyme is bound in a similar manner. The local structural changes observed are restricted to the empty metal binding site.  相似文献   

18.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

19.
A nonheme bromoperoxidase has been purified to homogeneity from the red seaweed Corallina officinalis. Like the corresponding enzyme previously reported from C. pilulifera, this bromoperoxidase contains a significant amount of nonheme iron. However, it is vanadate ion and not iron that activates the enzyme, and maximal activity is achieved with stoichiometric vanadium incorporation. The absence of competition between vanadium and iron suggests that they occupy distinct binding sites in the protein. A correlation between vanadium content and catalytic activity indicates that less than 12 percent of the maximal activity of the enzyme can be derived from metals other than vanadium.  相似文献   

20.
Protein tyrosine kinases (PTKs) are key members of intra- and extra-cellular signaling pathways. Aberrant signaling pathways are responsible for many human diseases, making these enzymes targets for drug development programs. The difficulty in PCR-amplification of Src due to the high G-C content was overcome using a commercial “G-C melt” reagent. The N06 Src was cloned along with the N12 and N23 neuronal variants. Neuronal variants of Src occur due to splicing within the N-loop of the SH3 domain. These variants have greater catalytic activity. Affinity purification methodologies were established that takes advantage of binding sites within the SH1 and SH2 domains. The purified enzyme is stable, without loss of activity for >1 year when frozen and more than 1 week at 4°C. A 96-well solution phase assay was developed and validated that overcomes many of the false positives and negatives generated by other assays. Studies of the catalytic mechanism have indicated that a second metal ion is essential for catalysis. Some transition metals can be substituted for the second metal ion and maintain activity while others act as dead-end inhibitors with binding constants in the sub-micromolar range. The precise role of this second metal ion is being studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号