首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.  相似文献   

2.
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips.  相似文献   

3.
Although gamma-tubulin complexes (gamma-TuCs) are known as microtubule (MT) nucleators, their function in vivo is still poorly defined. Mto1p (also known as mbo1p or mod20p) is a gamma-TuC-associated protein that recruits gamma-TuCs specifically to cytoplasmic MT organizing centers (MTOCs) and interphase MTs. Here, we investigated gamma-TuC function by analyzing MT behavior in mto1Delta and alp4 (GCP2 homologue) mutants. These cells have free, extra-long interphase MTs that exhibit abnormal behaviors such as cycles of growth and breakage, MT sliding, treadmilling, and hyperstability. The plus ends of interphase and spindle MTs grow continuously, exhibiting catastrophe defects that are dependent on the CLIP170 tip1p. The minus ends of interphase MTs exhibit shrinkage and pauses. As mto1Delta mutants lack cytoplasmic MTOCs, cytoplasmic MTs arise from spindle or other intranuclear MTs that exit the nucleus. Our findings show that mto1p and gamma-TuCs affect multiple properties of MTs including nucleation, nuclear attachment, plus-end catastrophe, and minus-end shrinkage.  相似文献   

4.
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.  相似文献   

5.
Stabilization of overlapping microtubules by fission yeast CLASP   总被引:3,自引:0,他引:3  
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.  相似文献   

6.
Nuclear movement before karyogamy in eukaryotes is known as pronuclear migration or as nuclear congression in Saccharomyces cerevisiae. In this study, S. cerevisiae is used as a model system to study microtubule (MT)-dependent nuclear movements during mating. We find that nuclear congression occurs through the interaction of MT plus ends rather than sliding and extensive MT overlap. Furthermore, the orientation and attachment of MTs to the shmoo tip before cell wall breakdown is not required for nuclear congression. The MT plus end-binding proteins Kar3p, a class 14 COOH-terminal kinesin, and Bik1p, the CLIP-170 orthologue, localize to plus ends in the shmoo tip and initiate MT interactions and depolymerization after cell wall breakdown. These data support a model in which nuclear congression in budding yeast occurs by plus end MT capture and depolymerization, generating forces sufficient to move nuclei through the cytoplasm. This is the first evidence that MT plus end interactions from oppositely oriented organizing centers can provide the force for organelle transport in vivo.  相似文献   

7.
The dynamics of the microtubule (MT) were studied by α-tubulin immunofluorescence methods during the polleng rain ontogeny inTradescantia paludosa. Before the microspore division, interphase nuclei of themicrospore cells were twice displaced from the center to one side (NM-1) and from the side to the center near the inner wall (NM-2). During NM-1, a few MTs appeared around the nucleus, but the movement was not interrupted by colchicine treatment. In NM-2, however, which was essential to the unequal division of microspores, many MTs and MT bundles became organized and shifted in a manner corresponding to the nuclear movement. This movement was inhibited by the colchicine treatment. It was concluded that NM-2 was dependent on the MT cytoskeleton, but NM-1 was independent. Througthout the microspore division, mitotic spindles were organized asymmetrically. From prophase to prometaphase, the spindle began to construct itself in the vegetative pole preceding the generative pole. The half-spindles were asymmetric at the metaphase and the phragmoplast developed curving toward the generative pole at the telophase. No pre-prophase band of MTs was observed throughout the cell cycle. The relationship between the characteristic MT dynamics and the nuclear movement, or unequal cell division, was revealed and is discussed here.  相似文献   

8.
Microtubule (MT) nucleation not only occurs from centrosomes, but also in large part from dispersed nucleation sites. The subsequent sorting of short MTs into networks like the mitotic spindle requires molecular motors that laterally slide overlapping MTs and bundling proteins that statically connect MTs. How bundling proteins interfere with MT sliding is unclear. In bipolar MT bundles in fission yeast, we found that the bundler ase1p localized all along the length of antiparallel MTs, whereas the motor klp2p (kinesin-14) accumulated only at MT plus ends. Consequently, sliding forces could only overcome resistant bundling forces for short, newly nucleated MTs, which were transported to their correct position within bundles. Ase1p thus regulated sliding forces based on polarity and overlap length, and computer simulations showed these mechanisms to be sufficient to generate stable bipolar bundles. By combining motor and bundling proteins, cells can thus dynamically organize stable regions of overlap between cytoskeletal filaments.  相似文献   

9.
Treatment of interphase apical cells of Sphacelaria rigidula Kützing with 10 μmol L?1 taxol for 4 h induced drastic changes in microtubule (MT) organization. In normal cells these MTs converge on the centrosomes and are nucleated from the pericentriolar area. After treatment, the endoplasmic, perinuclear and centrosome‐associated MT almost disappeared, and a massive assembly of cortical/subcortical, well‐organized MT bundles was observed. The bundles tended to be axially oriented, usually following the cylindrical wall, although other orientations were not excluded. The MTs in the apical part of the cell seemed to reach the cortex of the apical dome, sometimes bending to follow its curvature, whereas those in the basal portion of the cell terminated close to the transverse wall. Mitotic cells were also highly affected. Typical metaphase stages were very rarely found, and typical anaphase arrangements of chromosomes were completely absent. The chromosomes usually appeared to be dispersed singly or in small groups. Different atypical mitotic configurations were observed, depending on the stage of the cell cycle when the treatment started. The position and the orientation of the atypical mitotic spindles was disturbed. The nuclear envelope was completely disintegrated. The separation of the duplicated centrioles, as well as their usual perinuclear position, was also disturbed. Cortical MT bundles similar to those found in interphase cells were not found in the affected mitotic cells. In contrast, numerous MTs, without definite focal points, were found in the pericentriolar areas. Cytokinesis was inhibited by taxol treatment. The perinuclear and centrosome‐associated MTs found in mitotic cells were gradually replaced by a MT system similar to that of interphase cells. When the cytokinetic diaphragm had already been initiated when taxol treatment began, MTs were found on the cytokinetic plane, a phenomenon not observed in normal untreated cells. The results show clearly that: (i) in interphase cells the ability of centrosomes to nucleate MTs is intensely disturbed by taxol; (ii) centrosome dynamics in MT nucleation vary during the cell cycle; and (iii) taxol strongly affects mitosis and cytokinesis. In addition, it seems that the cortical/subcortical cytoplasm of interphase cells assumes the capacity to form numerous MT bundles.  相似文献   

10.
MCAK is a member of the kinesin-13 family of microtubule (MT)-depolymerizing kinesins. We show that the potent MT depolymerizer MCAK tracks (treadmills) with the tips of polymerizing MTs in living cells. Tip tracking of MCAK is inhibited by phosphorylation and is dependent on the extreme COOH-terminal tail of MCAK. Tip tracking is not essential for MCAK's MT-depolymerizing activity. We propose that tip tracking is a mechanism by which MCAK is preferentially localized to regions of the cell that modulate the plus ends of MTs.  相似文献   

11.
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a novel fission yeast protein required for MT nucleation from noncentrosomal gamma-tubulin complexes (gamma-TuCs). In interphase mto2Delta cells, MT nucleation was strongly inhibited, and MT bundling occurred infrequently and only when two MTs met by chance in the cytoplasm. In wild-type 2, we observed MT nucleation from gamma-TuCs bound along the length of existing MTs. We propose a model on how these nucleation events can more efficiently drive the formation of bipolar MT bundles in interphase. Key to the model is our observation of selective antiparallel binding of MTs, which can both explain the generation and spatial separation of multiple bipolar bundles.  相似文献   

12.
Mitosis and cytoplasmic microtubule (MT) dynamics were observed for the first time in Vaucheria terrestris sensu Goetz. Mitosis could occasionally be seen in part of the cylindrical coenocytic cell. The frequency of encountering cells with dividing nuclei was highest (ca 12%) 4 h after the onset of light in 12 h light/12 h dark regimes; it decreased thereafter and approached zero during the dark period. From the anterior end of every interphase nucleus a unique, long MT bundle extended. Differential-interference optics reveals that there is a filamentous structure in front of the moving nucleus. In prophase, the interphase bundle disappeared and shorter MT bundles emanated from both ends of the nucleus. In metaphase, the cytoplasmic MTs completely disappeared, probably being recycled to spindles. Continuous MTs elongated in anaphase and developed into an interzonal spindle in telophase; this elongated up to as much as 10 m. The daughter nuclei were pushed away from each other by the interzonal spindle. Mitosis started synchronously in a relatively narrow region, and the mitotic stage propagated as a mitotic wave to adjacent regions, most frequently from tip to base. The role of the mitotic wave in tip growth and morphogenesis of a coenocytic cell is discussed.This paper is dedicated to the memory of Dr. Eiji Kamitsubo who passed away on 25 April 2003.  相似文献   

13.
The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells.  相似文献   

14.
Polarized growth in filamentous fungi requires the integrity of the microtubule (MT) cytoskeleton. We found that growing MTs in Aspergillus nidulans merge at the center of fast growing tips and discovered that a kinesin motor protein, KipA, related to Tea2p of Schizosaccharomyces pombe, is required for this process. In a DeltakipA strain, MT plus ends reach the tip but show continuous lateral movement. Hyphae lose directionality and grow in curves, apparently due to mislocalization of the vesicle supply center (Spitzenk?rper) in the apex. Green fluorescent protein (GFP)-KipA accumulates at MT plus ends, whereas a KipA rigor mutant protein, GFP-KipA(G223E), coated MTs evenly. These findings suggest that KipA requires its intrinsic motor activity to reach the MT plus end. Using KipA as an MT plus-end marker, we found bidirectional organization of MTs and determined the locations of microtubule organizing centers at nuclei, in the cytoplasm, and at septa.  相似文献   

15.
Vorob'ev IA  Malyĭ IV 《Tsitologiia》2008,50(6):477-486
In interphase cells, microtubules (MT) are long and form extended radial array. The length of individual MTs in living cells exhibits substantial stochastic fluctuations while the average length distribution in a cell remains nearly constant. We present a quantitative model that describes relation of the MT length and dynamics in the steady state in the cell using the minimal set of parameters (cell radius, tubulin concentration, critical concentration for plus end elongation, and the number of nucleation sites). The MT array is approximated as a radial system, where MT minus ends are associated with the nucleation sites on the centrosome, while plus ends grow and shorten. Dynamic instability of MT plus ends is approximated as a random walk process with boundary conditions and the behavior of MT array is quantified using diffusion and drift coefficients (Vorobjev et al., 1997, 1999). We show that establishment of the extended steady-state array could be accomplished solely by the limitation of the MT growth by the cell margin. We determined for the cell radius, tubulin concentration, critical concentration for plus end elongation, and number of nucleation sites the reference point in the parameter space where plus ends of individual MT on average neither elongate nor shorten. In this case average length of MT is equal to the half of cell radius. When any parameter is shifted from its reference value MTs become longer or shorter and consequently acquire positive or negative drift of their ends. In the vicinity of reference point, change in any parameter has major effect on the MT length and rather small effect on the drift. When mean length of the MTs is close to the cell radius the drift of the free plus ends becomes substantial, resulting in processive growth of individual MTs in the internal cytoplasm accompanied by apparent stabilization of the plus ends at the cell margin. Under these conditions small changes in parameters have significant impact on the magnitude of drift. Experimental analysis of the MT plus ends dynamics in different cultured cells shows that in most cases plus ends display positive drift, which, in the framework of the presented model, is in agreement with the simultaneous presence of long MTs.  相似文献   

16.
In interphase cells, microtubules (MT) form an extended radial array. The length of individual MTs in living cells exhibits substantial stochastic fluctuations, while the average length distribution in a cell remains nearly constant. We present a quantitative model that describes the relation of the MT length and dynamics in the steady state in the cell using the minimal set of parameters (cell radius, tubulin concentration, critical concentration for plus-end elongation and the number of nucleation sites). The MT array is approximated as a radial system, where minus-ends of MTs are associated with nucleation sites on the centrosome, while plus ends grow and shorten. Dynamic instability of MT plus ends is approximated as a random walk process with boundary conditions; the behavior of an MT array is quantified using diffusion and drift coefficients (Vorobjev et al., 1997; Vorobjev et al., 1999). We show that the establishment of the extended steady-state array could be accomplished solely by the limitation of MT growth by the cell margin. For the cell radius, tubulin concentration, critical concentration for plus-end elongation, and the number of nucleation sites we determined the reference point in the parameter space where plus ends of individual MTs, on average, neither elongate nor shorten. In this case, the average MT length is equal to the half of the cell radius. When any parameter is shifted from its reference value, MTs become longer or shorter and, consequently, acquire a positive or negative drift of their plus ends. In the vicinity of the reference point, a change in any parameter has a major effect on the MT length and a rather small effect on the drift. When the average MT length is close to the cell radius, the drift of free plus ends becomes substantial, resulting in processive growth of individual MTs in the internal cytoplasm, accompanied by the apparent stabilization of plus ends at the cell margin. Under these conditions small changes in parameters have a significant impact on the magnitude of the drift. Experimental analysis of MT plus-end dynamics in different cultured cells shows that, in most cases, plus ends display positive drift, which, in the framework of the presented model, is in agreement with the simultaneous presence of long MTs.  相似文献   

17.
Adenomatous polyposis coli (APC) tumor suppressor protein has been shown to be localized near the distal ends of microtubules (MTs) at the edges of migrating cells. We expressed green fluorescent protein (GFP)-fusion proteins with full-length and deletion mutants of Xenopus APC in Xenopus epithelial cells, and observed their dynamic behavior in live cells. During cell spreading and wound healing, GFP-tagged full-length APC was concentrated as granules at the tip regions of cellular extensions. At higher magnification, APC appeared to move along MTs and concentrate as granules at the growing plus ends. When MTs began to shorten, the APC granules dropped off from the MT ends. Immunoelectron microscopy revealed that fuzzy structures surrounding MTs were the ultrastructural counterparts for these GFP signals. The COOH-terminal region of APC was targeted to the growing MT ends without forming granular aggregates, and abruptly disappeared when MTs began to shorten. The APC lacking the COOH-terminal region formed granular aggregates that moved along MTs toward their plus ends in an ATP-dependent manner. These findings indicated that APC is a unique MT-associated protein that moves along selected MTs and concentrates at their growing plus ends through their multiple functional domains.  相似文献   

18.
In interphase cells, the adenomatous polyposis coli (APC) protein accumulates on a small subset of microtubules (MTs) in cell protrusions, suggesting that APC may regulate the dynamics of these MTs. We comicroinjected a nonperturbing fluorescently labeled monoclonal antibody and labeled tubulin to simultaneously visualize dynamics of endogenous APC and MTs in living cells. MTs decorated with APC spent more time growing and had a decreased catastrophe frequency compared with non-APC-decorated MTs. Endogenous APC associated briefly with shortening MTs. To determine the relationship between APC and its binding partner EB1, we monitored EB1-green fluorescent protein and endogenous APC concomitantly in living cells. Only a small fraction of EB1 colocalized with APC at any one time. APC-deficient cells and EB1 small interfering RNA showed that EB1 and APC localized at MT ends independently. Depletion of EB1 did not change the growth-stabilizing effects of APC on MT plus ends. In addition, APC remained bound to MTs stabilized with low nocodazole, whereas EB1 did not. Thus, we demonstrate that the association of endogenous APC with MT ends correlates directly with their increased growth stability, that this can occur independently of its association with EB1, and that APC and EB1 can associate with MT plus ends by distinct mechanisms.  相似文献   

19.
The cycle of spindle pole body (SPB) duplication, differentiation, and segregation in Schizosaccharomyces pombe is different from that in some other yeasts. Like the centrosome of vertebrate cells, the SPB of S. pombe spends most of interphase in the cytoplasm, immediately next to the nuclear envelope. Some gamma-tubulin is localized on the SPB, suggesting that it plays a role in the organization of interphase microtubules (MTs), and serial sections demonstrate that some interphase MTs end on or very near to the SPB. gamma-Tubulin is also found on osmiophilic material that lies near the inner surface of the nuclear envelope, immediately adjacent to the SPB, even though there are no MTs in the interphase nucleus. Apparently, the MT initiation activities of gamma-tubulin in S. pombe are regulated. The SPB duplicates in the cytoplasm during late G2 phase, and the two resulting structures are connected by a darkly staining bridge until the mitotic spindle forms. As the cell enters mitosis, the nuclear envelope invaginates beside the SPB, forming a pocket of cytoplasm that accumulates dark amorphous material. The nuclear envelope then opens to form a fenestra, and the duplicated SPB settles into it. Each part of the SPB initiates intranuclear MTs, and then the two structures separate to lie in distinct fenestrae as a bipolar spindle forms. Through metaphase, the SPBs remain in their fenestrae, bound to the polar ends of spindle MTs; at about this time, a small bundle of cytoplasmic MTs forms in association with each SPB. These MTs are situated with one end near to, but not on, the SPBs, and they project into the cytoplasm at an orientation that is oblique to the simple axis. As anaphase proceeds, the nuclear fenestrae close, and the SPBs are extruded back into the cytoplasm. These observations define new fields of enquiry about the control of SPB duplication and the dynamics of the nuclear envelope.  相似文献   

20.
The polarity of kinetochore microtubules (MTs) has been studied in lysed PtK1 cells by polymerizing hook-shaped sheets of neurotubulin onto walls of preexisting cellular MTs in a fashion that reveals their structural polarity. Three different approaches are presented here: (a) we have screened the polarity of all MTs in a given spindle cross section taken from the region between the kinetochores and the poles, (b) we have determined the polarity of kinetochore MTs are more stable to cold-treated spindles; this approach takes advantage of the fact that kinetochore MTs are more stable to cold treatment than other spindle MTs; and (c) we have tracked bundles of kinetochore MTs from the vicinity of the pole to the outer layer of the kinetochore in cold- treated cells. In an anaphase cell, 90-95% of all MTs in an area between the kinetochores and the poles are of uniform polarity with their plus ends (i.e., fast growing ends) distal to the pole. In cold- treated cells, all bundles of kinetochore MTs show the same polarity; the plus ends of the MTs are located at the kinetochores. We therefore conclude that kinetochore MTs in both metaphase and anaphase cells have the same polarity as the aster MTs in each half-spindle. These results can be interpreted in two ways: (a) virtually all MTs are initiated at the spindle poles and some of the are "captured" by matured kinetochores using an as yet unknown mechanism to bind the plus ends of existing MTs; (b) the growth of kinetochore MTs is initiated at the kinetochore in such a way that the fast growing MT end is proximal to the kinetochore. Our data are inconsistent with previous kinetochore MT polarity determinations based on growth rate measurements in vitro. These studies used drug-treated cells from which chromosomes were isolated to serve as seeds for initiation of neurotubule polymerization. It is possible that under these conditions kinetochores will initiate MTs with a polarity opposite to the one described here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号