共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Bcor (BCL6 corepressor) is a widely expressed gene that is mutated in patients with X-linked Oculofaciocardiodental (OFCD) syndrome. BCOR regulates gene expression in association with a complex of proteins capable of epigenetic modification of chromatin. These include Polycomb group (PcG) proteins, Skp-Cullin-F-box (SCF) ubiquitin ligase components and a Jumonji C (Jmjc) domain containing histone demethylase. To model OFCD in mice and dissect the role of Bcor in development we have characterized two loss of function Bcor alleles. We find that Bcor loss of function results in a strong parent-of-origin effect, most likely indicating a requirement for Bcor in extraembryonic development. Using Bcor loss of function embryonic stem (ES) cells and in vitro differentiation assays, we demonstrate that Bcor plays a role in the regulation of gene expression very early in the differentiation of ES cells into ectoderm, mesoderm and downstream hematopoietic lineages. Normal expression of affected genes (Oct3/4, Nanog, Fgf5, Bmp4, Brachyury and Flk1) is restored upon re-expression of Bcor. Consistent with these ES cell results, chimeric animals generated with the same loss of function Bcor alleles show a low contribution to B and T cells and erythrocytes and have kinked and shortened tails, consistent with reduced Brachyury expression. Together these results suggest that Bcor plays a role in differentiation of multiple tissue lineages during early embryonic development. 相似文献
4.
Eroshenko Nikolai Ramachandran Rukmani Yadavalli Vamsi K Rao Raj R 《Journal of biological engineering》2013,7(1):1-16
There is growing demand for robust DNA assembly strategies to quickly and accurately fabricate genetic circuits for synthetic biology. One application of this technology is reconstitution of multi-gene assemblies. Here, we integrate a new software tool chain with 2ab assembly and show that it is robust enough to generate 528 distinct composite parts with an error-free success rate of 96%. Finally, we discuss our findings in the context of its implications for biosafety and biosecurity. 相似文献
5.
Zhang Y Cooke M Panjwani S Cao K Krauth B Ho PY Medrzycki M Berhe DT Pan C McDevitt TC Fan Y 《PLoS genetics》2012,8(5):e1002691
Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes. 相似文献
6.
7.
8.
9.
Multiple roles for protein phosphatase 1 in regulating the Xenopus early embryonic cell cycle. 总被引:4,自引:3,他引:4 下载免费PDF全文
Using cytostatic factor metaphase II-arrested extracts as a model system, we show that protein phosphatase 1 is regulated during early embryonic cell cycles in Xenopus. Phosphatase 1 activity peaks during interphase and decreases shortly before the onset of mitosis. A second peak of activity appears in mitosis at about the same time that cdc2 becomes active. If extracts are inhibited in S-phase with aphidicolin, then phosphatase 1 activity remains high. The activity of phosphatase 1 appears to determine the timing of exit from S-phase and entry into M-phase; inhibition of phosphatase 1 by the specific inhibitor, inhibitor 2 (Inh-2), causes premature entry into mitosis, whereas exogenously added phosphatase 1 lengthens the interphase period. Analysis of DNA synthesis in extracts treated with Inh-2, but lacking the A- and B-type cyclins, shows that phosphatase 1 is also required for the process of DNA replication. These data indicate that phosphatase 1 is a component of the signaling pathway that ensures that M-phase is not initiated until DNA synthesis is complete. 相似文献
10.
11.
Ebf gene function is required for coupling neuronal differentiation and cell cycle exit 总被引:4,自引:0,他引:4
Garcia-Dominguez M Poquet C Garel S Charnay P 《Development (Cambridge, England)》2003,130(24):6013-6025
12.
13.
14.
Pluripotent embryonic stem cells (ESCs) are a potential source for cell‐based tissue engineering and regenerative medicine applications, but their translation into clinical use will require efficient and robust methods for promoting differentiation. Fluid shear stress, which can be readily incorporated into scalable bioreactors, may be one solution for promoting endothelial and hematopoietic phenotypes from ESCs. Here we applied laminar shear stress to differentiating ESCs using a 2D adherent parallel plate configuration to systematically investigate the effects of several mechanical parameters. Treatment similarly promoted endothelial and hematopoietic differentiation for shear stress magnitudes ranging from 1.5 to 15 dyne/cm2 and for cells seeded on collagen‐, fibronectin‐ or laminin‐coated surfaces. Extension of the treatment duration consistently induced an endothelial response, but application at later stages of differentiation was less effective at promoting hematopoietic phenotypes. Furthermore, inhibition of the FLK1 protein (a VEGF receptor) neutralized the effects of shear stress, implicating the membrane protein as a critical mediator of both endothelial and hematopoietic differentiation by applied shear. Using a systematic approach, studies such as these help elucidate the mechanisms involved in force‐mediated stem cell differentiation and inform scalable bioprocesses for cellular therapies. Biotechnol. Bioeng. 2013; 110: 1231–1242. © 2012 Wiley Periodicals, Inc. 相似文献
15.
16.
Meshorer E 《Histology and histopathology》2007,22(3):311-319
Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny. 相似文献
17.
18.
19.
20.
Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development 总被引:11,自引:0,他引:11
Undifferentiated teratocarcinoma stem cells do not express heat shock genes. Solid teratocarcinomas grown in vivo which contain clusters of teratocarcinoma-derived differentiated tissue do respond to heat shock. During mouse embryonic development the expression of heat shock genes is first observed with morula/blastocyst stages of mouse primplantation embryos. 相似文献