首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor beta (TGF-beta) has been implicated in the maintenance of homeostasis in various organs, including the gastric epithelium. In particular, TGF-beta-induced signaling was shown to be required for the differentiation-associated physiological apoptosis of gastric epithelial cells, but its mechanism has not been well understood. In this study, the molecular mechanism of TGF-beta-induced apoptosis was analyzed in a human gastric epithelial cell line, SNU16, as an in vitro model. Expression of Smad7 and Bcl-X(L), but not viral FLIP, was shown to prevent TGF-beta-induced apoptosis, indicating an exclusive requirement of the activation of Smad signaling pathway and mitochondrial dysfunction followed by activation of caspase-9. In addition, treatment with TGF-beta induced binding of Bim, a proapoptotic Bcl-2 homology domain 3 (BH3)-only protein, to Bcl-X(L), which is dependent on the activation of Smad, and reduction in the expression of Bim by RNA interference decreased the sensitivity to TGF-beta-induced apoptosis. Moreover, we found abnormalities in the gastric epithelium of both Bim and caspase-9 knockout mice; these abnormalities were associated with a defect of physiological apoptosis in gastric epithelial cells. These results indicate for the first time that TGF-beta is involved in the physiological loss of gastric epithelial cells by activating apoptosis mediated by Smad, Bim, and caspase-9.  相似文献   

2.
3.
4.
Causal relationship between the loss of RUNX3 expression and gastric cancer   总被引:137,自引:0,他引:137  
Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelial cells. Between 45% and 60% of human gastric cancer cells do not significantly express RUNX3 due to hemizygous deletion and hypermethylation of the RUNX3 promoter region. Tumorigenicity of human gastric cancer cell lines in nude mice was inversely related to their level of RUNX3 expression, and a mutation (R122C) occurring within the conserved Runt domain abolished the tumor-suppressive effect of RUNX3, suggesting that a lack of RUNX3 function is causally related to the genesis and progression of human gastric cancer.  相似文献   

5.
6.
7.
8.
9.
As H. pylori infection progresses, intestinal metaplasia (IM), a key event in gastric carcinogenesis, develops in the stomach. The mechanism by which H. pylori infection causes the trans-differentiation of gastric cells to intestinal-type cells remains an important question. In the current study, we found that RUNX3 is deregulated in all human IM specimens examined by either down regulation or mislocalization; Aberrant localization of a gastric tumor suppressor RUNX3 is observed in most human cases of IM with concurrent H. pylori infection, and RUNX3 is down-regulated in most cases of IM without H. pylori-infection. The cytoplasmic mislocalization of a RUNX3 was associated with H. pylori-induced c-Src activation and RUNX tyrosine phosphorylation. Moreover, gastric epithelial cells of Runx3(-/-) mice expressed the intestinal markers Muc2 and Li-Cadherin, which suggests that the deregulation of Runx3 is a key event in the intestinalization of the gastric epithelium. Collectively, the results of the current study suggest that RUNX3 deregulation is associated with H. pylori-induced pathogenesis and the development of IM.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Upstream and downstream targets of RUNX proteins   总被引:23,自引:0,他引:23  
  相似文献   

20.
Both the ERK and phosphatidylinositol 3'-kinase (PI3K) signaling pathways can protect cells from apoptosis following withdrawal of survival factors. We have previously shown that the ERK1/2 pathway acts independently of PI3K to block expression of the BH3-only protein, BimEL, and prevent serum withdrawal-induced cell death, although the precise mechanism by which ERK reduced BimEL levels was unclear. By comparing Bim mRNA and Bim protein, expression we now show that the rapid expression of BimEL following serum withdrawal cannot be accounted for simply by increases in mRNA following inhibition of PI3K. In cells maintained in serum BimEL is a phosphoprotein. We show that activation of the ERK1/2 pathway is both necessary and sufficient to promote BimEL phosphorylation and that this leads to a substantial increase in turnover of the BimEL protein. ERK1/2-dependent degradation of BimEL proceeds via the proteasome pathway because it is blocked by proteasome inhibitors and is defective at the restrictive temperature in cells with a temperature-sensitive mutation in the E1 component of the ubiquitin-conjugating system. Finally, co-transfection of BimEL and FLAG-ubiquitin causes the accumulation of polyubiquitinated forms of Bim, and this requires the ERK1/2 pathway. Our findings provide new insights into the regulation of Bim and the role of the ERK pathway in cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号