首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of evidence to the contrary, population models generally assume that the dispersal trajectories of animals are random, but systematic dispersal could be more efficient at detecting new habitat and may therefore constitute a more realistic assumption. Here, we investigate, by means of simulations, the properties of a potentially widespread systematic dispersal strategy termed "foray search." Foray search was more efficient in detecting suitable habitat than was random dispersal in most landscapes and was less subject to energetic constraints. However, it also resulted in considerably shorter net dispersed distances and higher mortality per net dispersed distance than did random dispersal, and it would therefore be likely to lead to lower dispersal rates toward the margins of population networks. Consequently, the use of foray search by dispersers could crucially affect the extinction-colonization balance of metapopulations and the evolution of dispersal rates. We conclude that population models need to take the dispersal trajectories of individuals into account in order to make reliable predictions.  相似文献   

2.
Dispersal patterns are important in metapopulation ecology because they affect the dynamics and survival of populations. However, because little empirical information exists on dispersal behaviour of individuals, theoretical models usually assume random dispersal. Recent empirical evidence, by contrast, suggests that the butterfly Maniola jurtina uses a non‐random, systematic dispersal strategy, can detect and orient towards habitat from distances of 100–150 m, and prefers a familiar habitat patch over a non‐familiar one (‘homing behaviour’). The present study (1) investigated whether these results generalise to another butterfly species, Pyronia tithonus; and (2) examined the cause of the observed ‘homing behaviour’ in M. jurtina. P. tithonus used a similar non‐random, systematic dispersal strategy to M. jurtina, had a similar perceptual range for habitat detection and preferred a familiar habitat patch over a non‐familiar one. The ‘homing behaviour’ of M. jurtina was found to be context‐dependent: individual M. jurtina translocated within habitat did not return towards their capture point, whereas individuals translocated similar distances out of habitat did return to their ‘home’ patch. We conclude that butterfly ‘homing behaviour’ is not based on an inherent preference for a familiar location, but that familiarity with an area facilitates the recognition of suitable habitat, towards which individuals orient if they find themselves in unsuitable habitat. Contrary to conventional wisdom, we suggest that frequent, short ‘excursions’ over habitat patch boundaries are evolutionarily advantageous to individuals, because increased familiarity with the surrounding environment is likely to increase the ability of a straying animal to return to its natural habitat, and to reduce the rate of mortality experienced by individuals attempting to disperse between habitat patches. We discuss the implications of the non‐random dispersal for existing metapopulation models, including models of the evolution of dispersal rates.  相似文献   

3.
Theoretical work exploring dispersal evolution focuses on the emigration rate of individuals and typically assumes that movement occurs either at random to any other patch or to one of the nearest‐neighbour patches. There is a lack of work exploring the process by which individuals move between patches, and how this process evolves. This is of concern because any organism that can exert control over dispersal direction can potentially evolve efficiencies in locating patches, and the process by which individuals find new patches will potentially have major effects on metapopulation dynamics and gene flow. Here, we take an initial step towards filling this knowledge gap. To do this we constructed a continuous space population model, in which individuals each carry heritable trait values that specify the characteristics of the biased correlated random walk they use to disperse from their natal patch. We explore how the evolution of the random walk depends upon the cost of dispersal, the density of patches in the landscape, and the emigration rate. The clearest result is that highly correlated walks always evolved (individuals tended to disperse in relatively straight lines from their natal patch), reflecting the efficiency of straight‐line movement. In our models, more costly dispersal resulted in walks with higher correlation between successive steps. However, the exact walk that evolved also depended upon the density of suitable habitat patches, with low density habitat evolving more biased walks (individuals which orient towards suitable habitat at quite large distances from that habitat). Thus, low density habitat will tend to develop individuals which disperse efficiently between adjacent habitat patches but which only rarely disperse to more distant patches; a result that has clear implications for metapopulation theory. Hence, an understanding of the movement behaviour of dispersing individuals is critical for robust long‐term predictions of population dynamics in fragmented landscapes.  相似文献   

4.
E Ockinger  H Van Dyck 《PloS one》2012,7(8):e41517
Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.  相似文献   

5.
《Ecological Complexity》2007,4(1-2):42-47
In both percolation models and metapopulation (habitat patch) models, habitat pattern is assumed to be fixed and binary (matrix is unsuitable). In percolation models movement (dispersal) is strictly to neighbors whereas in metapopulation models movement is not explicitly considered but is factored into the colonization coefficients. Models with explicit dispersal also typically treat habitat as binary. Disturbance, if considered, is usually assumed to affect only preferred habitat. In this study, a dispersal kernel is assumed with spatially explicit populations and habitat, and the matrix is assumed to be affected by disturbances or fluctuating environmental conditions that open sites for dispersers (e.g., seeds) on a temporary basis. These ephemeral habitat patches are shown to act as stepping stones between preferred habitat. The consequence of stepping stones in this case is an increase in persistence when remnant preferred habitat is rare, and the conversion of extinction scenarios into persistence scenarios in some cases. The utilization of stepping stones by a species leads to nonintuitive relationships between observed abundance and habitat preference that could cause conservation strategies to backfire.  相似文献   

6.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

7.
Recent insights from habitat selection theory may help conservation managers encourage released animals to settle in appropriate habitats. By all measures, success rates for captive–release and translocation programs are low, and have shown few signs of improvement in recent years. We consider situations in which free-living dispersers prefer new habitats that contain stimuli comparable to those in their natal habitat, a phenomenon called natal habitat preference induction (NHPI). Theory predicts NHPI when dispersers experienced favorable conditions in their natal habitat, and have difficulty estimating the quality of unfamiliar habitats. NHPI is especially likely to occur when performance in a given habitat is enhanced if an animal developed in that same habitat type. Animals exhibiting NHPI are expected to rely on conspicuous cues that can be quickly and easily detected during search, and to prefer new habitats possessing cues that match those encountered in their natal habitat.A major obstacle to successful relocations is that newly released animals often reject the habitat near the release site and rapidly travel long distances away before settling. An NHPI perspective argues that long-distance movements away from release sites occur because releasees prefer to settle in familiar types of habitat, and reject novel areas lacking cues similar to those in their habitat of origin. Similarly, a preference by releasees for familiar cues may encourage them to seek out inappropriate, low quality habitats following release at a new location. We review evidence from a number of studies indicating that problems with habitat selection behavior compromise conservation efforts, and provide recommendations that may encourage animals to “feel more at home” in post-release habitats.  相似文献   

8.
The extinction process of fragmented populations, characterized by a small number of conspecifics inhabiting each patch, is heavily affected by natural and human disturbance. To evaluate the risk of extinction we consider a network of identical patches connected by passive or active dispersal and hosting a finite, discrete number of individuals. We discuss three types of disturbance affecting the metapopulation: permanent loss of habitat patches, erosion of existing patches, and random catastrophes that wipe out the entire population of a patch. Starting from an infinite-dimensional Markov model that fully accounts for demographic stochasticity, we reduce it to finite dimension via moment closure with negative-binomial approximation. The compact models obtained in this way account for the dynamics of the fraction of empty patches, the average number of individuals in occupied patches, and the variance of their distribution. After comparing the performance of these compact models with that of the infinite-dimensional model in the case of no disturbances, we then proceed to computing persistence-extinction boundaries as bifurcation lines of the compact models in the space of demographic and disturbance parameters. We consider bifurcations with respect to demographic and environmental parameters and contrast our results with those of previous theories. We find out that environmental catastrophes increase the risk of extinction for both frequent and infrequent dispersers, while the random loss of patches has a much larger influence on frequent dispersers. This influence can be counterbalanced by active dispersal. Local erosion of habitat fragments has a larger influence on infrequent than on frequent dispersers. We finally discuss the important synergistic effects of disturbances acting simultaneously.  相似文献   

9.
Habitat quality and habitat geometry are two crucial factors driving metapopulation dynamics. However, their intricacy has prevented so far a reliable test of their relative impact on local population dynamics and persistence. Here we report on a long‐term study in which we manipulated habitat quality within a butterfly metapopulation, whereas habitat geometry was kept constant. The treatment consisted in lowering the quality of certain habitat patches while others were kept untreated, using the same spatial design over years. The effect of the treatment on metapopulation dynamics was assessed by comparing residence probability and dispersal rates within the same habitat network on 11 and 6 independent butterfly generations before and after treatment, respectively. Results showed that the experimental decrease in habitat quality generated significantly higher emigration rates from treated patches. This increase was associated with a significant decrease in dispersal rates out of untreated patches, and a significant higher residence probability in these patches. The direct relation between lower habitat quality and higher dispersal propensity in treated patches was expected. However, the lower dispersal from untreated patches after treatment was opposite to the expectation of positive density dependent dispersal generally observed in butterflies. Such negative density‐dependent dispersal would allow a rapid fine‐tuning of dispersal rates to changes in habitat quality, particularly when the spatial autocorrelation of the environmental is low. Accordingly, dispersal would promote an ideal free distribution of individuals in the landscape according to their fitness expectation.  相似文献   

10.
Adaptive Patch Searching Strategies in Fragmented Landscapes   总被引:1,自引:0,他引:1  
The search strategies dispersers employ to search for new habitat patches affect individuals’ search success and subsequently landscape connectivity and metapopulation viability. Some evidence indicates that individuals within the same species may display a variety of behavioural patch searching strategies rather than one species-specific strategy. This may result from landscape heterogeneity. We modelled the evolution of individual patch searching strategies in different landscapes. Specifically, we analysed whether evolution can favour different, co-existing, behavioural search strategies within one population and to what extent this coexistence of multiple strategies was dependent on landscape configuration. Using an individual-based simulation model, we studied the evolution of patch searching strategies in three different landscape configurations: uniform, random and clumped. We found that landscape configuration strongly influenced the evolved search strategy. In uniform landscapes, one fixed search strategy evolved for the entire spatially structured population, while in random and clumped landscapes, a set of different search strategies emerged. The coexistence of several search strategies also strongly depended on the dispersal mortality. We show that our result can affect landscape connectivity and metapopulation dynamics. Co-ordinating editor: N. Yamamura  相似文献   

11.
Dispersal and connectivity in metapopulations   总被引:11,自引:0,他引:11  
This paper reviews characteristics of dispersal that influence metapopulation functioning, such as releasing factors, density dependence, timing and types and health of dispersers. Economic thresholds, intraspecific conflicts and avoidance of inbreeding arc often regarded as the key ultimate or proximate (or both) causes of dispersal, but there is no consensus about the most important mechanisms. Dispersing individuals arc often considered to differ genetically from the residents but good supporting evidence has only been presented for some insect species. Sex and age differences in dispersal rates are most common in polygamous species and in long-lived species with many litters per female. A bimodal distribution of dispersal distances, earlier thought to be a common pattern, is probably an artifact, caused by habitat heterogeneity and varying survival of settled individuals. Dispersal distances are longer in poor environments. Habitat specialists are more affected by boundaries during dispersal than generalists. Dispersal just before or during the early reproductive season is common in certain species occupying early successional habitats. Dispersal increased both population and metapopulation size and persistence in plants, insects and small mammals.  相似文献   

12.
We studied the ability of Akodon azarae (Rodentia, Muridae) to return to their preferred habitat, when released at a perpendicular distance (25, 50 or 75 m) from the edge towards the cropfield, and a parallel distance (100 m) away from the site of first capture within the edge habitat. Return success was estimated as the proportion of animals recovered in edges. The recapture rate between the field and the border was significantly higher than the recapture rate estimated according to successive captures in the border. Successful returns did not decrease significantly with increasing release distance, but animals released at 50 m from edges were less successful in returning to borders than the other release-distance groups. Although the median time taken to the first recapture in edges did not differ among the release-distance groups, rodents released at 25 m and 50 m returned to edges faster than those released at 75 m. A. azarae showed both a successful return to the edge and a trend to return to the home range area. We conclude that A. azarae can return to edges from cropfields at distances that are larger than those they usually travel, allowing the use of fields when they present good conditions for reproduction and survival. Successful return is probably the result of direct movements rather than random wandering.  相似文献   

13.
Leptokurtic distributions of movement distances observed in field-release studies, in which some individuals move long distances while most remain at or near their release point, are a common feature of mobile animals. However, because leptokurtosis is predicted to be transient in homogeneous populations, persistent leptokurtosis suggests a population heterogeneity. We found evidence for a heterogeneity that may generate persistent leptokurtosis. We tested individuals of the Trinidad killifish Rivulus hartii for boldness in a tank test and released them back into their native stream. Boldness in the tank test predicted distance moved in the field releases, even after effects of size and sex were removed. Further, data from a 19-mo mark-recapture study showed that individual growth correlated positively with movement in a predator-threatened river zone where the Rivulus population is spatially fragmented and dispersal is likely to be a hazardous activity. In contrast, no such correlation existed in a predator-absent zone where the population is unfragmented. These results show that a behavioral trait, not discernible from body size or sex, contributes to dispersal and that a component of fitness of surviving "dispersers" is elevated above that of "stayers," a fundamental assumption or prediction of many models of the evolution of dispersal through hazardous habitat.  相似文献   

14.
Animal dispersal is usually studied with capture-mark-reencounter data, which provide information on realized dispersal but rarely on underlying processes. In this context, the unreliable assumption of all habitat being available is usually made when describing and analysing dispersal patterns. However, actual settlement options may be constrained by the spatial distribution of appropriate patches, so an important task to understand movement patterns is to adequately describe dispersal when the dispersers’ options are constrained by the sites that are available to them. Using a long-term monitored population of the migratory lesser kestrel, we show how randomization procedures can be used to describe dispersal strategies in such situations. This species breeds colonially in discrete patches, most individuals (83%) disperse from their natal colony, and dispersers tend to move short distances (median=7.2 km). Observed patterns (natal dispersal rates and median dispersal distances of birds emigrating from their natal colony) were compared with those expected from two null models of random settlement of individuals: in any colony available in the whole population, or within the subpopulation (cluster of colonies) of origin. Our simulations indicate that philopatry to the natal colony was much higher than expected under both null expectations, and observed distances were much lower than expected in the whole population. When individuals were constrained to settle within their natal subpopulation in the simulations, dispersal distances were longer than expected in females, but were higher or lower in males depending on year. Dispersal was not only constrained by the spatial distribution of settlement options, but specific hypotheses arise that can be helpful to design and conduct further research. These results challenge previous interpretations of observed dispersal patterns, which may not reflect free decisions of individuals but environmental or social constraints. We suggest using simulation procedures as a routine to advance in the understanding of dispersal ecology and evolution.  相似文献   

15.
Effects of cognitive abilities on metapopulation connectivity   总被引:1,自引:0,他引:1  
Connectivity among demes in a metapopulation depends on both the landscape's and the focal organism's properties (including its mobility and cognitive abilities). Using individual‐based simulations, we contrast the consequences of three different cognitive strategies on several measures of metapopulation connectivity. Model animals search suitable habitat patches while dispersing through a model landscape made of cells varying in size, shape, attractiveness and friction. In the blind strategy, the next cell is chosen randomly among the adjacent ones. In the near‐sighted strategy, the choice depends on the relative attractiveness of these adjacent cells. In the far‐ sighted strategy, animals may additionally target suitable patches that appear within their perceptual range. Simulations show that the blind strategy provides the best overall connectivity, and results in balanced dispersal. The near‐sighted strategy traps animals into corridors that reduce the number of potential targets, thereby fragmenting metapopulations in several local clusters of demes, and inducing sink–source dynamics. This sort of local trapping is somewhat prevented in the far‐sighted strategy. The colonization success of strategies depends highly on initial energy reserves: blind does best when energy is high, near‐sighted wins at intermediate levels, and far‐sighted outcompetes its rivals at low energy reserves. We also expect strong effects in terms of metapopulation genetics: the blind strategy generates a migrant‐pool mode of dispersal that should erase local structures. By contrast, near‐ and far‐sighted strategies generate a propagule‐pool mode of dispersal and source–sink behavior that should boost structures (high genetic variance among‐ and low variance within local clusters of demes), particularly if metapopulation dynamics is also affected by extinction–colonization processes. Our results thus point to important effects of the cognitive ability of dispersers on the connectivity, dynamics and genetics of metapopulations.  相似文献   

16.
This study on epizoochory offers experimental data on retention times and potential dispersal distances of propagules of 13 plant species that commonly inhabit cultivated areas in the south of Sweden. Wood mouse Apodemus flavicollis was used as dispersal vector. Seven of the investigated species produce fruits that carry obvious hooks, barbs or bristles and for comparison the remaining six species, lacking such features, were also included. Excised fruits that initially carried appendages were used in a complementary comparison. Propagules were applied by hand to the back of the animals, which were which released in enclosures to move about freely. Observations were made continually until the seeds were dropped. The distance covered by the animals while moving was measured and the potential dispersal distances calculated. Small fruits were in general found to be more efficiently transported than large ones, but large propagules carrying appendages sometimes remained in place for considerable periods. The potential dispersal distances ranged up to nearly 30 m. The retention time was significantly enhanced by the presence of dispersal attributes. The behavioural pattern of the animals (grooming, movements) plays a significant part in the successful transportation of propagules. By comparing the result with similar experiments using fallow deer Dama dama and domestic cattle Bos taurus as dispersal vectors it can be stated that mice are surprisingly effective as seed dispersers. Large mammals disperse propagules on a larger scale (<1 km) compared with small mammals, that affect plant distribution more locally (<100 m). We consider adhesive dispersal a most significant component in plant metapopulation dynamics, considerably enhancing the probability of occasional propagules reaching suitable sites in a fragmented landscape.  相似文献   

17.
Long-distance seed dispersal may have important consequences for species range, migration rates, metapopulation dynamics, and gene flow. Plants have evolved various adaptations for seed dispersal by standard agents, with typical dispersal distances associated with them. Seeds may also be dispersed by non-standard agents for which they do not show any apparent adaptation and may reach long distances. By sampling the droppings of emus Dromaius novaehollandiae at three localities in Western Australia, we investigated their potential to act as long-distance dispersers of seeds with adaptations for dispersal modes other than endozoochory, such as unassisted, ant, wind and exozoochory, for which they act as non-standard agents. Seventy-seven plant species with five types of dispersal syndromes were found in the 112 droppings analysed, with at least 68 having viable seeds. Although endozoochory was the most frequent syndrome, the presence of other syndromes was important in terms of number of species (61%) and seeds (50%). Estimates of species richness indicated that an increase in sampling effort would increase the number of species observed, especially among non-endozoochores. As a consequence of their long gut retention times and high mobility, emus can provide long-distance dispersal opportunities that may be especially relevant for species with dispersal modes of typically short distances (unassisted, ant).
Our results suggest that the role of emus as non-standard agents for long-distance dispersal should be taken into account for understanding current geographic ranges, gene flow and metapopulation dynamics of some plant species, as well as for predicting their future responses to climate change and fragmentation.  相似文献   

18.
In most metapopulation models dispersal is assumed to be a fixed species-specific trait, but in reality dispersal abilities are highly sensitive to various selective pressures. Strict isolation of a metapopulation, which precludes any influx of immigrants (and their genes) from outside and makes it impossible for emigrants to reach other localities with suitable habitat, thus reducing fitness benefits of long-distance dispersal to zero, may be expected to impose strong selection against dispersal. We tested the above prediction by comparing dispersal parameters derived with the Virtual Migration model for isolated and non-isolated metapopulations of two species of large blue Maculinea (= Phengaris) butterflies, surveyed with intensive mark-recapture. Mortality during dispersal was found to be twice (in M. teleius) to five times higher (in M. arion) in isolated metapopulations. Isolation also resulted in significantly reduced dispersal distances in isolated metapopulations, with the effect being particularly strong in M. arion females. Apart from its evolutionary and ecological consequences, dispersal depression in isolated butterfly metapopulations implied by our results has serious conservation implications. It provides a clear argument against using parameter values obtained in a different environmental setting in modelling applications, e.g., Population Viability Analyses or environmental impact assessment. Furthermore, it underlines the importance of establishing well-connected networks of suitable habitats prior to species release in areas where reintroductions are planned.  相似文献   

19.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

20.
Young flying squirrels (Pteromys volans) dispersing in fragmented forests   总被引:1,自引:0,他引:1  
Dispersal is a key determinant of the population dynamics ofspecies. Thus, a better understanding of how dispersal is affectedby the landscape structure and how animals make decisions aboutmoving across different landscapes is needed. We studied thedispersal of 60 radio-collared juvenile Siberian flying squirrels(Pteromys volans) in southern Finland. The effect of landscapestructure on selected dispersal direction, dispersal distance,and straightness of dispersal path was studied. Flying squirrelswere capable of dispersing over long distances in fragmentedforest landscapes. The patches used as temporary roosting sitesduring dispersal were of a lower quality than were those usedas finally occupied patches. The patches used were larger thanwere patches on average in the study areas. There was a veryclear directional bias in the dispersal path (i.e., it was nearlya straight line), which remained over a large scale, but wide-openareas obstructed the straightness of the path. As the distancesbetween crossed patches increased, short-distance disperserswere found further away from their natal home range. However,there were no differences in the landscape that could explainthe differences between individuals in decisions to remain philopatricor to become short- or long-distance dispersers. In addition,whereas short-distance dispersers dispersed in random directions,long-distance dispersers started to disperse in directions dominatedby preferred habitat. Thus, there were behavioral differencesbetween dispersers. Our results supported the hypotheses statingthat individuals decide to disperse long or short distancesbefore the onset of dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号