首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smad4 as a transcription corepressor for estrogen receptor alpha   总被引:7,自引:0,他引:7  
  相似文献   

2.
3.
4.
5.
6.
7.
8.
The effects of the steroid hormone 17beta-estradiol are mediated through its interaction with the nuclear estrogen receptor (ER). Upon binding 17beta-estradiol, the ER initiates changes in gene expression through its interaction with specific DNA sequences, estrogen response elements (EREs), and recruits coregulatory proteins that influence gene expression. To better understand how estrogen-responsive genes are regulated, we have isolated and identified proteins associated with ERalpha when it is bound to the consensus ERE. One of these proteins, protein disulfide isomerase (PDI), has two distinct functions: acting as a molecular chaperone to maintain properly folded proteins and regulating the redox state of proteins by catalyzing the thiol-disulfide exchange reaction through two thioredoxin-like domains. Using a battery of biochemical and molecular techniques, we have demonstrated that PDI colocalizes with ERalpha in MCF-7 nuclei, alters ERalpha conformation, enhances the ERalpha-ERE interaction in the absence and presence of an oxidizing agent, influences the ability of ERalpha to mediate changes in gene expression, and associates with promoter regions of two endogenous estrogen-responsive genes. Our studies suggest that PDI plays a critical role in estrogen responsiveness by functioning as a molecular chaperone and assisting the receptor in differentially regulating target gene expression.  相似文献   

9.
10.
Estrogen receptors (ERs) mediate most of the biological effects of estrogen in mammary and uterine epithelial cells by binding to estrogen response elements in the promoter region of target genes or through protein-protein interactions. Anti-estrogens such as tamoxifen inhibit the growth of ER-positive breast cancers by reducing the expression of estrogen-regulated genes. However, anti-estrogen-resistant growth of ER-positive tumors remains a significant clinical problem. Here we show that phosphatidylinositol (PI) 3-kinase and AKT activate ERalpha in the absence of estrogen. Although PI 3-kinase increased the activity of both estrogen-independent activation function 1 (AF-1) and estrogen-dependent activation function 2 (AF-2) of ERalpha, AKT increased the activity of only AF-1. PTEN and a catalytically inactive AKT decreased PI 3-kinase-induced AF-1 activity, suggesting that PI 3-kinase utilizes AKT-dependent and AKT-independent pathways in activating ERalpha. The consensus AKT phosphorylation site Ser-167 of ERalpha is required for phosphorylation and activation by AKT. In addition, LY294002, a specific inhibitor of the PI 3-kinase/AKT pathway, reduced phosphorylation of ERalpha in vivo. Moreover, AKT overexpression led to up-regulation of estrogen-regulated pS2 gene, Bcl-2, and macrophage inhibitory cytokine 1. We demonstrate that AKT protects breast cancer cells from tamoxifen-induced apoptosis. Taken together, these results define a molecular link between activation of the PI 3-kinase/AKT survival pathways, hormone-independent activation of ERalpha, and inhibition of tamoxifen-induced apoptotic regression.  相似文献   

11.
12.
Amino acid Asp-351 in the ligand binding domain of estrogen receptor alpha (ERalpha) plays an important role in regulating the estrogen-like activity of selective estrogen receptor modulator-ERalpha complexes. 4-Hydroxytamoxifen is a full agonist at a transforming growth factor alpha target gene in situ in MDA-MB-231 human breast cancer cells stably transfected with the wild-type ERalpha. In contrast, raloxifene (Ral), which is also a selective estrogen receptor modulator, is a complete antiestrogen in this system. Because D351G ERalpha allosterically silences activation function-1 activity in the 4-hydroxytamoxifen-ERalpha complex with the complete loss of estrogen-like activity, we examined the converse interaction of amino acid 351 and the piperidine ring of the antiestrogen side chain of raloxifene to enhance estrogen-like action. MDA-MB-231 cells were either transiently or stably transfected with Asp-351 (the wild type), D351E, D351Y, or D351F ERalpha expression vectors. Profound differences in the agonist and antagonist actions of Ralcenter dotERalpha complexes were noted only in stable transfectants. The agonist activity of the Ralcenter dotERalpha complex was enhanced with D351E and D351Y ERalpha, but raloxifene lost its agonist activity with D351F ERalpha. The distance between the piperidine nitrogen of raloxifene and the negative charge of amino acid 351 was critical for estrogen-like actions. The role of the piperidine ring in neutralizing Asp-351 was addressed using compound R1h, a raloxifene derivative replacing the nitrogen on its piperidine ring with a carbon to form cyclohexane. The derivative was a potent agonist with wild type ERalpha. These results support the concept that the side chain of raloxifene shields and neutralizes the Asp-351 to produce an antiestrogenic ERalpha complex. Alteration of either the side chain or its relationship with the negative charge at amino acid 351 controls the estrogen-like action at activating function 2b of the selective estrogen receptor modulator ERalpha complex.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号