首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a past study of hyperoxia-induced lung injury, the extensive lymphatic filling could have resulted from lymphatic proliferation or simple lymphatic recruitment. This study sought to determine whether brief lung injury could produce similar changes, to show which lymphatic compartments fill with edema, and to compare their three-dimensional structure. Tracheostomized rats were ventilated at high tidal volume (12-16 ml) or low tidal volume (3-5 ml) or allowed to breathe spontaneously for 25 min. Light microscopy showed more perivascular, interlobular septal, and alveolar edema in the animals ventilated at high tidal volume (P < 0.0001). Scanning electron microscopy of lymphatic casts showed extensive filling of the perivascular lymphatics in the group ventilated at high tidal volume (P < 0.01), but lymphatic filling was greater in the nonventilated group than in the group that was ventilated at low tidal volume (P < 0.01). The three-dimensional structures of the cast interlobular and perivascular lymphatics were similar. There was little filling and no difference in pleural lymphatic casts among the three groups. More edema accumulated in the surrounding lymphatics of larger blood vessels than smaller blood vessels. Brief high-tidal-volume lung injury caused pulmonary edema similar to that caused by chronic hyperoxic lung injury, except it was largely restricted to perivascular and septal lymphatics and prelymphatic spaces.  相似文献   

2.
The branching pattern of the coronary arteries and veins is asymmetric, i.e., many small vessels branch off of a large trunk such that the two daughter vessels at a bifurcation are of unequal diameters and lengths. One important implication of the geometric vascular asymmetry is the dispersion of blood flow at a bifurcation, which leads to large spatial heterogeneity of myocardial blood flow. To document the asymmetric branching pattern of the coronary vessels, we computed an asymmetry ratio for the diameters and lengths of all vessels, defined as the ratio of the daughter diameters and lengths, respectively. Previous data from silicone elastomer cast of the entire coronary vasculature including arteries, arterioles, venules, and veins were analyzed. Data on smaller vessels were obtained from histological specimens by optical sectioning, whereas data on larger vessels were obtained from vascular casts. Asymmetry ratios for vascular areas, volumes, resistances, and flows of the various daughter vessels were computed from the asymmetry ratios of diameters and lengths for every order of mother vessel. The results show that the largest orders of arterial and venous vessels are most asymmetric and the degree of asymmetry decreases toward the smaller vessels. Furthermore, the diameter asymmetry at a bifurcation is significantly larger for the coronary veins (1.7-6.8 for sinus veins) than the corresponding arteries (1.5-5.8 for left anterior descending coronary artery) for orders 2-10, respectively. The reported diameter asymmetry at a bifurcation leads to significant heterogeneity of blood flow at a bifurcation. Hence, the present data quantify the dispersion of blood flow at a bifurcation and are essential for understanding flow heterogeneity in the coronary circulation.  相似文献   

3.
Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 microl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 +/- 2.9%) compared with both WKYC (39 +/- 2.5%, P = 0.035) and SHR (40 +/- 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU (P < 0.001) and WKYC (P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.  相似文献   

4.
R Funk 《Acta anatomica》1986,125(4):252-257
Tests are still lacking about the suitability of scanning electron microscopy (SEM) of vascular resin casts to show different functional states of peripheral blood vessels. With the aid of a vitalmicroscopic device, we tried to elaborate a vascular casting method using the model of the albino rat iris vasculature. Functional variations of the vasculature were induced by local application of epinephrine to one eye using the untreated fellow eye as a control. It was found that if our modification of Araldite plastic is injected via a systemic access and without preceding rinsing with fixatives or salt solutions there is a good correlation between the vessel diameters seen in SEM of resin casts and the vessel diameters found in the vitalmicroscopic observations. Thus, this method appears also suitable for studying the effect of vasoactive substances.  相似文献   

5.
A morphological study of the intracranial microvasculature of the Black bear (Ursus americanus) using vascular casts was undertaken. The object was to provide basic information regarding structural modifications of the microvasculature that might provide insight into the ability to cope with low blood flow states that occur during winter sleep. Vascular casts were prepared from 6 animals. The microvasculature of the brain disclosed characteristic features of the small vessels in mammals, including vascular sphincters of two types and numerous arterial and arteriolar anastomoses.  相似文献   

6.
A minimally diseased (mean intimal thickness = 56 microns) human aortic bifurcation was replicated in rigid and compliant flow-through casts. Both casts were perfused with physiological flow waves having the same Reynolds and unsteadiness numbers; the pulse pressure in the compliant cast produced radial strains similar to those expected from post-mortem measurements of the compliance of the original tissue. The compliant cast was perfused with a Newtonian fluid and one whose rheology was closer to that of blood. Wall shear rate histories were estimated from near-wall velocities obtained by laser Doppler velocimetry at identical sites in both casts. Intimal thickness was measured at corresponding sites in the original vessel and linear regressions were performed between these thicknesses and several normalized shear rate measures obtained from the histories. The correlations showed a positive slope--that is, the intima was thicker at sites exposed to higher shear rates--consistent with earlier results for relatively healthy vessels, but their significance was often poor. There was no significant effect of either model compliance or fluid rheology on the slopes of the correlations of intimal thickness against any normalized shear rate measure.  相似文献   

7.
Pulse wave propagation in the mature rabbit systemic circulation was simulated using the one-dimensional equations of blood flow in compliant vessels. A corrosion cast of the rabbit circulation was manufactured to obtain arterial lengths and diameters. Pulse wave speeds and inflow and outflow boundary conditions were derived from in vivo data. Numerical results captured the main features of in vivo pressure and velocity pulse waveforms in the aorta, brachiocephalic artery and central ear artery. This model was used to elucidate haemodynamic mechanisms underlying changes in peripheral pulse waveforms observed in vivo after administering drugs that alter nitric oxide synthesis in the endothelial cells lining blood vessels. According to our model, these changes can be explained by single or combined alterations of blood viscosity, peripheral resistance and compliance, and the elasticity of conduit arteries.  相似文献   

8.
Summary NAAG is one of the neuropeptides found in highest concentrations in the CNS. The presence of micromolar concentrations of NAAG in human CSF was demonstrated by using two different and complementary analytical approaches: 1) isocratic separation of endogenous NAAG by reverse-phase high performance liquid chromatography (HPLC) with dual wavelength detection and 2) derivatization of endogenous NAAG with acidic methanol and subsequent HPLC analysis of the derivative NAAG-trimethyl ester. The NAAG concentration was between 0.44µmol/l and 7.16µmol/l (mean of 2.19 ± 1.53µmol/l) in CSF samples from forty neuropsychiatric patients. Endogenous NAAG or [3H]NAAG added to CSF samples were not significantly degraded when the CSF was incubated at 37°C during one hour, suggesting that the peptide is a highly stable metabolite in the subarachnoid space. In addition, evidence is provided that NAAG does not present a concentration gradient along the lower subarachnoid space.  相似文献   

9.
Bovine pituitary intraglandular colloid is formed by the cyclic degeneration of marginal cells lining the intermediate lobe and is housed in the intraglandular lumen (residual lumen). The lumen communicates with the subarachnoid cerebrospinal fluid space by well defined channels. Electrophoresis in acrylamide gel shows bovine pituitary intraglandular colloid as having double protein bands identical to the protein in bovine and human cerebrospinal fluid. These studies demonstrate two distinct bands in the gamma region for colloid, not apparent in the normal bovine or human cerebrospinal fluid due to the low concentration of gamma globulins. We conclude that pituitary colloid, laden with immunoreactive fragments of various pituitary hormones, is discharged from the hypophyseal intraglandular space, directly into the subarachnoid cerebrospinal fluid space.  相似文献   

10.
We have examined the effects of endothelin (ET) on the renal microcirculation by in vivo microscopy using the model of the split hydronephrotic rat kidney. ET, a potent vasoconstrictor peptide synthesized by vascular endothelial cells, showed marked and long-lasting effects on glomerular blood flow and vessel diameters in various segments of the renal vascular bed. Intravenously applied ET (100 ng/min/kg) increased systemic blood pressure from 123 +/- 7 to 156 +/- 4 mm Hg, decreased glomerular blood flow by 70%, and preferentially constricted larger preglomerular vessels, e.g. the arcuate artery. The competitive leukotriene antagonist FPL55712 significantly attenuated the vasoconstrictor response of the larger vessels. Local ET administration decreased glomerular blood flow in a dose-dependent manner (50% reduction at a concentration of 2.6 +/- 0.7 x 10(-9) M) and constricted smaller vessel segments, e.g. the afferent and efferent arterioles near the glomerulus. The constriction induced by ET was not significantly affected by the Ca2+ channel blocker nitrendipine (2.8 x 10(-6) to 1.1 x 10(-5) M). We conclude that intravenous ET effects are probably mediated by leukotrienes, inducing constriction of larger renal vessels. Locally administered ET acts directly on the renal vasculature, especially on smaller vessels.  相似文献   

11.
The objective of this study was to determine the nitric oxide (NO) concentration and vessel diameter dependence of the pulmonary arterial dilation induced by inhaled NO. Isolated dog lung lobes were situated between a microfocal X-ray source and X-ray detector and perfused with either blood or plasma. Boluses of radiopaque contrast medium were injected into the lobar artery under control conditions, when the pulmonary arteries were constricted by infusion of serotonin and when the serotonin infusion was accompanied by inhalation of from 30 to 960 parts/million NO. Arterial diameter measurements were obtained from X-ray images of vessels having control diameters in the 300- to 3,400-microm range. Serotonin constricted the vessels throughout the size range studied, with an average decrease in diameter of approximately 20%. The fractional reversal of the serotonin-induced constriction by inhaled NO was directly proportional to inhaled NO concentration, inversely proportional to vessel size, and greater with plasma than with blood perfusion in vessels as large as 3 mm in diameter. The latter indicates that intravascular hemoglobin affected the bronchoalveolar-to-arterial luminal NO concentration gradient in fairly large pulmonary arteries. The data provide information regarding pulmonary arterial smooth muscle accessibility to intrapulmonary gas that should be useful as part of the database for modeling the communication between intrapulmonary gas and pulmonary arterial smooth muscle cells in future studies.  相似文献   

12.
The ductus arteriosi (DA) are embryonic blood vessels found in amniotic vertebrates that shunt blood away from the pulmonary artery and lungs and toward the aorta. Here, we examine changes in morphology of the right and left DA (LDA), and right and left aorta (LAo) from embryonic and hatchling alligators. The developing alligator has two‐patent DA that join the right and LAo. Both DA exhibit a muscular phenotype composed of an internal smooth muscle layer (2–4 cells thick). At hatching, the lumen diameter of both DA decreases as the vessels begin to close within the first 12 h of posthatch life. Between day 1 and day 12 posthatching, the vessel becomes fully occluded with endothelial and smooth muscle cells filling the lumen. A number of DA from hatchlings contained blood clots along their length. The lumen of the full term alligator DA is reduced in comparison with the full term chicken DA. The developing alligator embryo has an additional right‐to‐left shunt pathway in the LAo arising from the right ventricle. The embryonic LAo diameter is twice the diameter of either the right DA or LDA, providing a lower resistance pathway for blood leaving the right ventricle. On the basis of these findings, we propose that the paired DA of the embryonic alligator have a reduced role in the embryonic right‐to‐left shunt of blood from the right ventricle when compared with the avian DA. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Localization of acetylcholinesterase (AChE) was investigated in the chicken Harderian gland at the electron microscopic level. Nerve cells in the pterygopalatine ganglion showed AChE activity. They had a pale and large nucleus which was round or oval in shape. Reaction product of AChE was detected between the nuclear envelopes; in the cisterna of rough endoplasmic reticulum and the lumen of the Golgi lamellae, and on the plasma membrane of the nerve cell. In the interstitium of the gland, nerve fibers showing AChE activity were easily found. They were often seen in the perivascular space and between plasma cells. These nerve fibers had varicosities in contact with plasma cells and the endothelium or the smooth muscle fiber of the blood vessels. AChE-positive varicosities or terminals contained many small clear vesicles (about 50nm in diameter) and a few large dense-cored vesicles (about 100 nm in diameter). No contacts of nerve fibers with acinar cells or the ductal epithelium were observed in the present study. Our data indicate that cholinergic nerves play distinct roles in the regulation of the immune function of the chicken Harderian gland.  相似文献   

14.
The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM) was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P) axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals.  相似文献   

15.
Unique luminal configurations exhibited by small arterial vessels in contracted spleens of dog and cat were studied by means of vascular corrosion casts examined by scanning electron microscopy. Concertina-like pleating was seen in casts of trabecular arteries/arterioles, whereas within lymphatic nodules arteriolar casts lacked pleating and were smooth and uniformly cylindrical (as were all small arterial vessels in distended spleens). Morphological details of arterial vessels observed in histological sections indicated that pleating is not due to contraction of specially arranged vascular smooth muscle but to overall shortening of trabecular arterial vessels, caused by contraction of longitudinal smooth muscle in trabeculae. Another phenomenon observed in casts from contracted spleens was an almost complete "pinching-off" of many arteriolar lumens; histological evidence indicated that this is due to contraction of vascular smooth muscle, which selectively diverts flow away from certain regions of the organ. Also noted was a markedly convoluted, tortuous configuration of arterioles (penicilli) in the red pulp of contracted spleens.  相似文献   

16.

Purpose

While animal models are widely used to investigate the development of restenosis in blood vessels following an intervention, computational models offer another means for investigating this phenomenon. A computational model of the response of a treated vessel would allow investigators to assess the effects of altering certain vessel- and stent-related variables. The authors aimed to develop a novel computational model of restenosis development following an angioplasty and bare-metal stent implantation in an atherosclerotic vessel using agent-based modeling techniques. The presented model is intended to demonstrate the body’s response to the intervention and to explore how different vessel geometries or stent arrangements may affect restenosis development.

Methods

The model was created on a two-dimensional grid space. It utilizes the post-procedural vessel lumen diameter and stent information as its input parameters. The simulation starting point of the model is an atherosclerotic vessel after an angioplasty and stent implantation procedure. The model subsequently generates the final lumen diameter, percent change in lumen cross-sectional area, time to lumen diameter stabilization, and local concentrations of inflammatory cytokines upon simulation completion. Simulation results were directly compared with the results from serial imaging studies and cytokine levels studies in atherosclerotic patients from the relevant literature.

Results

The final lumen diameter results were all within one standard deviation of the mean lumen diameters reported in the comparison studies. The overlapping-stent simulations yielded results that matched published trends. The cytokine levels remained within the range of physiological levels throughout the simulations.

Conclusion

We developed a novel computational model that successfully simulated the development of restenosis in a blood vessel following an angioplasty and bare-metal stent deployment based on the characteristics of the vessel cross-section and stent. A further development of this model could ultimately be used as a predictive tool to depict patient outcomes and inform treatment options.  相似文献   

17.
Hyponatremia developed both prior to and after surgery in 30.5% and 23.4% out of 164 patients with ruptured intracranial aneurysms. It was more frequent postoperatively in those patients in whom baseline serum sodium levels were lower. Hyponatremic patients were older than normonatremic. The mean difference in age was about 7 years. The authors, basing on CT scans, have found that hyponatremia development has been more likely in patients with blood visible in subarachnoid space, specially chiasmatic cistern, and patients with ventricular bleeding or hydrocephalus. Hyponatremia following subarachnoid hemorrhage seems to result from the ischemic lesions to hypothalamus i may, therefore, be considered as vegetative equivalent of so-called cerebrovascular spasm.  相似文献   

18.
Lymphatic endothelial and smooth-muscle cells in tissue culture   总被引:9,自引:0,他引:9  
Summary Endothelial and smooth-muscle cells from bovine mesenteric lymphatic vessels have been collected and cultured in vitro. The endothelial cells grew as a monolayer exhibiting a “cobblestone” appearance with individual cells tending to be more flattened at confluence than their blood vascular counterparts. Approximately 30% of these cells expressed Factor VIII antigen compared with bovine mesenteric artery or human umbilical-vein endothelium in which the majority of cells were positive. The lymphatic smooth-muscle cells exhibited focal areas of multilayering and were Factor VIII negative. The availability of lymphatic endothelial and smooth-muscle cells in culture will provide a new tool for the investigation of the biological properties of the lymphatic vessels and their role in homeostasis. Supported by the Medical Research Council of Canada, Grant MA-7925  相似文献   

19.
We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models.  相似文献   

20.
Rat gestation sites were examined on days 7 through 9 of pregnancy by light microscopy and transmission and scanning electron microscopy to determine the extent of vascular modifications in the vicinity of the mesometrial part of the implantation chamber (mesometrial chamber). At a later time, the mesometrial chamber is, in conjunction with the uterine lumen, the site of chorioallantoic placenta formation. On day 7, in the vicinity of the mesometrial chamber, vessels derived from a subepithelial capillary plexus and venules draining the plexus were dilating. By early day 8, this network of thin-walled dilated vessels (sinusoids) was further enlarged and consisted primarily of hypertrophied endothelial cells with indistinct basal laminas. Sinusoids were frequently close to the mesometrial chamber's luminal surface which was devoid of epithelial cells but was lined by decidual cell processes and extracellular matrix. By late day 8, cytoplasmic projections of endothelial cells extended between healthy-appearing decidual cells and out onto the mesometrial chamber's luminal surface, and endothelial cells were sometimes found on the luminal surface indicating that endothelial cells were migrating. The presence of maternal blood cells in the mesometrial chamber lumen suggested that there was continuity between the chamber and blood-vessel lumens. On day 9, the mesometrial chamber was completely lined with hypertrophied endothelial cells, and sinusoid lumens were clearly continuous with the lumen of the mesometrial chamber. Mesometrial sinusoids and possibly the mesometrial chamber lumen were continuous with vessels in vicinity of the uterine lumen that were fed by mesometrial arterial vessels. Clearing of the mesometrial chamber lumen during perfusion fixation via the maternal vasculature indicated the patency of this luminal space and its confluence with mesometrial arterial vessels and sinusoids. The conceptus occupied an antimesometrial position in the implantation chamber on days 7 through 9, and it was not in direct contact with uterine tissues in the vicinity of the mesometrial chamber. These observations suggest that angiogenesis, not trophoblast invasion or decidual cell death, plays a major role in the opening of maternal vessels into the mesometrial chamber lumen before the formation of the chorioallantoic placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号