首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cakmak  I.  Cakmak  O.  Eker  S.  Ozdemir  A.  Watanabe  N.  Braun  H.J. 《Plant and Soil》1999,215(2):203-209
The effect of varied zinc (Zn) supply on shoot and root dry matter production, severity of Zn deficiency symptoms and Zn tissue concentrations was studied in two Triticum turgidum (BBAA) genotypes and three synthetic hexaploid wheat genotypes by growing plants in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn=5 mg kg-1 soil) and without (−Zn) Zn supply. Two synthetic wheats (BBAADD) were derived from two different Aegilops tauschii (DD) accessions using same Triticum turgidum (BBAA), while one synthetic wheat (BBAAAA) was derived from Triticum turgidum (BBAA) and Triticum monococcum (AA). Visible symptoms of Zn deficiency, such as occurrence of necrotic patches on leaves and reduction in shoot elongation developed more rapidly and severely in tetraploid wheats than in synthetic hexaploid wheats. Correspondingly, decreases in shoot and root dry matter production due to Zn deficiency were higher in tetraploid wheats than in synthetic hexaploid wheats. Transfer of the DD genome from Aegilops tauschii or the AA genome from Triticum monococcum to tetraploid wheat greatly improved root and particularly shoot growth under Zn-deficient, but not under Zn-sufficient conditions. Better growth and lesser Zn deficiency symptoms in synthetic hexaploid wheats than in tetraploid wheats were not accompanied by increases in Zn concentration per unit dry weight, but related more to the total amount of Zn per shoot, especially in the case of synthetic wheats derived from Aegilops tauschii. This result indicates higher Zn uptake capacity of synthetic wheats. The results demonstrated that the genes for high Zn efficiency from Aegilops tauschii (DD) and Triticum monococcum (AA) are expressed in the synthetic hexaploid wheats. These wheat relatives can be used as valuable sources of genes for improvement of Zn efficiency in wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Greenhouse experiments were carried out with six diploid, ninetetraploid and seven hexaploid wheats, including wild and primitivegenotypes, to study the influence of varied zinc (Zn) supplyon the severity of Zn deficiency symptoms, shoot dry matterproduction and shoot Zn concentrations. In addition to wildand primitive genotypes, one modern tetraploid cultivar withhigh sensitivity to Zn deficiency and two modern hexaploid cultivars,one highly sensitive to and one resistant to Zn deficiency,were included for comparison. Plants were grown for 44 d ina severely Zn-deficient calcareous soil, with (+Zn; 5 mg Znkg-1soil) and without (-Zn) Zn fertilization. Visible Zn deficiencysymptoms, including whitish-brown necrotic patches on leaf blades,appeared very rapidly and severely in all tetraploid wheat genotypes.Compared with tetraploid wheats, diploid and hexaploid wheatswere less sensitive to Zn deficiency. With additional Zn, shootdry matter production was higher in tetraploid than diploidand hexaploid wheats. However, under Zn-deficient conditionstetraploid wheats had the lowest shoot dry matter production,indicating the very high sensitivity of tetraploid wheats toZn deficiency. Consequently, Zn efficiency expressed as theratio of shoot dry matter produced under Zn deficiency to Znfertilization, was much lower in tetraploid wheats than in diploidand hexaploid wheats. On average, Zn efficiency ratios were36% for tetraploid, 60% for diploid and 64% for hexaploid wheats.Differences in Zn efficiency among and within diploid, tetraploidand hexaploid wheats were positively related to the amount ofZn per shoot of the genotypes, but not to the amount of Zn perunit dry weight of shoots or seeds used in the experiments.The seeds of the accessions of tetraploid wild wheats containedup to 120 mg Zn kg-1, but the resulting plants showed very highsensitivity to Zn deficiency. By contrast, hexaploid wheatsand primitive diploid wheats with much lower Zn concentrationsin seeds had higher Zn efficiencies. It is suggested that notonly enhanced Zn uptake capacity but also enhanced internalZn utilization capacity of genotypes play important roles indifferential expression of Zn efficiency. The results of thisstudy also suggest the importance of the A and D genomes asthe possible source of genes determining Zn efficiency in wheat.Copyright 1999 Annals of Botany Company Seeds, Triticum aestivum, Triticum monococcum, Triticum turgidum, zinc concentrations, zinc deficiency, zinc efficiency.  相似文献   

3.
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.  相似文献   

4.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

5.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

6.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   

7.
The origin of spelt and free-threshing hexaploid wheat   总被引:1,自引:0,他引:1  
It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.  相似文献   

8.
The Glu-1 locus, encoding the high-molecular-weight glutenin protein subunits, controls bread-making quality in hexaploid wheat (Triticum aestivum) and represents a recently evolved region unique to Triticeae genomes. To understand the molecular evolution of this locus region, three orthologous Glu-1 regions from the three subgenomes of a single hexaploid wheat species were sequenced, totaling 729 kb of sequence. Comparing each Glu-1 region with its corresponding homologous region from the D genome of diploid wheat, Aegilops tauschii, and the A and B genomes of tetraploid wheat, Triticum turgidum, revealed that, in addition to the conservation of microsynteny in the genic regions, sequences in the intergenic regions, composed of blocks of nested retroelements, are also generally conserved, although a few nonshared retroelements that differentiate the homologous Glu-1 regions were detected in each pair of the A and D genomes. Analysis of the indel frequency and the rate of nucleotide substitution, which represent the most frequent types of sequence changes in the Glu-1 regions, demonstrated that the two A genomes are significantly more divergent than the two B genomes, further supporting the hypothesis that hexaploid wheat may have more than one tetraploid ancestor.  相似文献   

9.
Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor   总被引:12,自引:0,他引:12  
Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.  相似文献   

10.
11.
六倍体普通小麦(Triticum aestivum L.)是由四倍体小麦(T.turgidum L.)与二倍体节节麦(Aegilops tanschii Coss.)天然杂交然后通过染色体自然加倍形成的异源多倍体.这一起源过程是自然条件下天然发生的,它的发生需要具备一个条件:四倍体小麦与节节麦的天然杂交种子在自然条件(没有幼胚培养等)下能够正常发芽出苗.我们从22份节节麦中发现来自中东的节节麦AS60在不采用幼胚培养等人工辅助条件下,仍然很容易与四倍体小麦和普通小麦产生有生活力的杂种植株.AS60与四倍体小麦的杂交种子有50.0%(反交)及57.1%(正交)的种子,而AS60与六倍体普通小麦的杂交种子则有45.5%不需幼胚培养等措施能够正常发芽、生长.AS60的这一特征正是普通小麦起源过程需要的条件.最后探讨了这一发现对小麦遗传改良和对普通小麦起源演化研究的意义.  相似文献   

12.
Uptake and retranslocation of leaf-applied radiolabeled cadmium (109Cd) was studied in three diploid (Triticum monococcum, AA), four tetraploid (Triticum turgidum, BBAA) and two hexaploid (Triticum aestivum, BBAADD) wheat genotypes grown for 9 d under controlled environmental conditions in nutrient solution. Among the tetraploid wheats, two genotypes were primitive (ssp. dicoccum) and two genotypes modern wheats (ssp. durum). Radiolabelled Cd was applied by immersing the tips (3 cm) of mature leaf into a 109Cd radiolabelled solution. There was a substantial variation in the uptake and export of 109Cd among and within wheat species. On average, diploid wheats (AA) absorbed and translocated more 109Cd than other wheats. The largest variation in 109Cd uptake was found within tetraploid wheats (BBAA). Primitive tetraploid wheats (ssp. dicoccum) had a greater uptake capacity for 109Cd than modern tetraploid wheats (ssp. durum). In all wheats studied, the amount of the 109Cd exported from the treated leaf into the roots and the remainder of the shoots was poorly related to the total absorption. For example, bread wheat cultivars were more or less similar in total absorption, but differed greatly in the amount of 109Cd retranslocated. The diploid wheat genotype 'FAL-43' absorbed the lowest amount of 109Cd, but retranslocated the greatest amount of 109Cd in roots and remainder of shoots. The results indicate the existence of substantial genotypic variation in the uptake and retranslocation of leaf-applied 109Cd. This variation is discussed in terms of potential genotypic differences in binding of Cd to cell walls and the composition of phloem sap ligands possibly affecting Cd transport into sink organs.  相似文献   

13.
Fifty-eight synthetic hexaploid wheats, developed by crossing Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal., were evaluated at the seedling stage, together with their parents, for resistance to greenbug (Schizaphis graminum Rondani) under greenhouse conditions. Seedlings of different synthetic hexaploids showed large phenotypic differences for resistance. All the T. dicoccum parents were susceptible, while high levels of resistance were observed in some of the Ae. tauschii parents. Of the synthetic hexaploids derived from resistant Ae. tauschii parents, a high proportion (76%) showed levels of resistance to the greenbug biotype used that were comparable to those of the resistant parent. While there were clear indications of the presence of suppressor genes for greenbug resistance in the A and/or B genomes of T. dicoccum in some synthetics, positive epistatic interaction was also found in synthetic hexaploids with higher levels of resistance than that of either parent. Resistance from different Ae. tauschii accessions was expressed differently when crossed with the same T. dicoccum, indicating diversity among the resistance genes present in the test synthetic hexaploid wheats. Based on resistance reactions, the genes conferring greenbug resistance in these synthetic hexaploids are probably different from resistance genes previously transferred to wheat from Ae. tauschii.  相似文献   

14.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

15.
Li W  Huang L  Gill BS 《Plant physiology》2008,146(1):200-212
Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the A(m) genome of hexaploid Triticum zhukovskyi (A(m)AG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed.  相似文献   

16.
小麦属核型分析和BG染色体组及4A染色体的起源   总被引:1,自引:0,他引:1  
应用植物有丝分裂染色体标本制备新方法和N—带技术对小麦属(Triticum)9个六倍体种(AABBDD),8个四倍体种(AABB,AAGG),3个二倍体种(AA,A~uA~u)及B组的可能供体沙融山羊草(Ae. shronensis)体细胞核型和N—带进行了分析。结果表明,小麦属全部为具中部或次中部着丝点染色体,核型属于“2A”类型,不对称性随倍性提高而有所增加。种问核型有一定差异。所有小麦B染色体组、G染色体组和4A染色体均显N—带,其它染色体则不显带或只显很浅的着丝点带。六倍体种B染色体组带型基本相同,四倍体小麦B组N—带种间有一定差异。提莫菲维小麦(T.Timopheevi)G组带纹数目和分布与B梁色体组有显著差别,作者认为两者非同源。沙融山羊草核型和带型都与小麦B组相近,是B组的可能供体。一粒系小麦A染色体组基本不显N—带,其中无与4A带型相同的染色体,4A起源尚待研究。  相似文献   

17.
18.
Bread wheat (Triticum aestivum) is an allohexaploid species, consisting of three subgenomes (A, B, and D). To study the molecular evolution of these closely related genomes, we compared the sequence of a 307-kb physical contig covering the high molecular weight (HMW)-glutenin locus from the A genome of durum wheat (Triticum turgidum, AABB) with the orthologous regions from the B genome of the same wheat and the D genome of the diploid wheat Aegilops tauschii (Anderson et al., 2003; Kong et al., 2004). Although gene colinearity appears to be retained, four out of six genes including the two paralogous HMW-glutenin genes are disrupted in the orthologous region of the A genome. Mechanisms involved in gene disruption in the A genome include retroelement insertions, sequence deletions, and mutations causing in-frame stop codons in the coding sequences. Comparative sequence analysis also revealed that sequences in the colinear intergenic regions of these different genomes were generally not conserved. The rapid genome evolution in these regions is attributable mainly to the large number of retrotransposon insertions that occurred after the divergence of the three wheat genomes. Our comparative studies indicate that the B genome diverged prior to the separation of the A and D genomes. Furthermore, sequence comparison of two distinct types of allelic variations at the HMW-glutenin loci in the A genomes of different hexaploid wheat cultivars with the A genome locus of durum wheat indicates that hexaploid wheat may have more than one tetraploid ancestor.  相似文献   

19.
20.
R G Allaby  T A Brown 《Génome》2000,43(2):250-254
A PCR system was designed to amplify 5S spacer rDNA specifically from homeologous chromosome 1 in a variety of species representative of the Aegilops and Triticum genera. Two polymerase chain reaction (PCR) primer combinations were used, one of which appears to be apomorphic in nature and specific to chromosome 1A in Triticum urartu and tetraploid and hexaploid wheats containing the AA genome donated by T. urartu. The value of studying single repeat types to investigate the molecular evolution of 5S-rDNA arrays is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号