首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Potato tuber ( Solanum tuberosum L. cv. Bintje) callus shows a decrease in fresh weight and an increase in dry weight upon transfer to nutrient medium supplemented with 0.3 or 0.5 M mannitol. The osmolarity of the intracellular fluid increases simultaneously. Probably mannitol is taken up from the medium till the osmolarity of the tissue is in equilibrium with that of the medium. After osmotic adaptation, on a medium with 0.5 M mannitol, growth is negligible, although the tissue retains its viability.
Respiration increases upon transfer to medium with extra mannitol, especially when expressed on a fresh weight basis. On this basis cytochrome and alternative pathway capacities do not change appreciably. The respiratory increase is exclusively caused by an increased engagement of the alternative pathway. The participation of this pathway in uninhibited respiration increases from about 10 to 90% upon transfer to medium with extra mannitol. The increase in respiration is partly correlated with the decrease in fresh weight upon transfer. Per disc, the capacities of the cytochrome and alternative pathway decline. Yet, total respiration per disc significantly increases due to the increased participation of the alternative pathway. This results in an almost equal ATP-production per disc before and after transfer. We suggest, that the alternative pathway functions as a reserve capacity in potato callus, which is switched on when ATP-production coupled to the cytochrome pathway is impaired.  相似文献   

3.
A range of studies have compared the level of nutritionally relevant compounds in crops from organic and nonorganic farming systems, but there is very limited information on the effect of farming systems and their key components on the protein composition of plants. We addressed this gap by quantifying the effects of different farming systems and key components of such systems on the protein profiles of potato tubers. Tuber samples were produced in the Nafferton factorial systems study, a group of long-term, replicated factorial field experiments designed to identify and quantify the effect of fertility management methods, crop protection practices and rotational designs used in organic, low input and conventional production systems. Protein profiles were determined by 2-DE and subsequent protein identification by HPLC-ESI-MS/MS. Principal component analysis of 2-DE data showed that only fertility management practices (organic matter vs. mineral fertiliser based) had a significant effect on protein composition. Quantitative differences were detected in 160 of the 1100 tuber proteins separated by 2-DE. Proteins identified by MS are involved in protein synthesis and turnover, carbon and energy metabolism and defence responses, suggesting that organic fertilisation leads to an increased stress response in potato tubers.  相似文献   

4.
A review of the physiology of potato tuber dormancy   总被引:3,自引:0,他引:3  
A review of the scientific literature relating to the physiology of potato (Solanum tuberosum) tuber dormancy is presented. Effort has been concentrated on an up-to-date overview of the current state of understanding, rather than comprehensively covering the very extensive literature going back over many decades. The format chosen follows the fate of the crop. After defining tuberisation and dormancy, the physiological activity of the dormant tuber is reviewed and the storage environment is considered from both a physical and chemical standpoint. Advances in chemical control and the potential for molecular biology are highlighted.  相似文献   

5.
An analysis of the potato (Solanum tuberosum L.) tuber life cycle has been completed using a range of mass-spectrometry (MS) based approaches. Six stages have been examined which included developing and mature tubers, sprouting mature tubers and mature tubers stored at 5 or 10°C. The impact of excising developing tubers from the mother plant (source-sink manipulation) was also determined. Data was subjected to Principal Components Analysis, Analysis of Variance and Hierarchical Cluster Analysis to assess the potential for separating the life cycle stages, to define the major profiles for metabolite changes during the life cycle stages examined, and to inform on which metabolites underpinned these profiles. We have shown that it is possible to separate all of the stages using combined analytical approaches and that five major profiles can be used to describe the changes in metabolite levels. Data also indicate that, within a relatively short timeframe, manipulation of source-sink relations has a significant impact on metabolite pools beyond what is currently known for sugar–starch metabolism. We have also demonstrated that the metabolomics data can be mined to provide answers to specific questions––in this case to identify temporal changes in metabolites related to acrylamide-forming potential.  相似文献   

6.
Potato tuber development has proven to be a valuable model system for studying underground sink organ formation. Research on this topic has led to the identification of many genes involved in this complex process and has aided in the unravelling of the mechanisms underlying starch synthesis. However, less attention has been paid to the biochemical pathways of other important metabolites or to the changing metabolic fluxes occurring during potato tuber development. In this paper, we describe the construction of a potato complementary DNA (cDNA) microarray specifically designed for genes involved in processes related to tuber development and tuber quality traits. We present expression profiles of 1315 cDNAs during tuber development where the predominant profiles were strong up- and down-regulation. Gene expression profiles showing transient increases or decreases were less abundantly represented and followed more moderate changes, mainly during tuber initiation. In addition to the confirmation of gene expression patterns during tuber development, many novel differentially expressed genes were identified and are considered as candidate genes for direct involvement in potato tuber development. A detailed analysis of starch metabolism genes provided a unique overview of expression changes during tuber development. Characteristic expression profiles were often clearly different between gene family members. A link between differential gene expression during tuber development and potato tissue specificity is described. This dataset provides a firm basis for the identification of key regulatory genes in a number of metabolic pathways that may provide researchers with new tools to achieve breeding goals for use in industrial applications.  相似文献   

7.
In potato (Solatium tuberosum L. cv. Bintje and Doré) callus a very active hydrox-amate-stimulated NADH-dependent O2-uptake develops during the growth of the callus, which is caused by a peroxidase. More than 95% of the peroxidase activity is found in the 40000 g supernatant. The total activity may be as high as 1000 times the respiratory acitivity of the callus tissue. At least two fractions, obtained by Sephadex gel filtration, can be distinguished showing this peroxidase activity, one of about 15 kDa and one > 50 kDa. The main properties of both fractions are: a) Hydroxamate at 0.2–0.5 mM gives half-maximal stimulation. Maximal stimulation is observed with 1–3 mM benzhydroxamate (BHAM) and 1–15 mM salicylhydroxamate (SHAM). Higher concentrations, especially of BHAM, give less or no stimulation. b) Hydroxamates are not consumed during the reaction. c) Both NADH and NADPH can serve as the electron donor for the reaction. The affinity for NAD(P)H is very low (Km near 10 mM). In the absence of hydroxamates NAD(P)H is only slowly oxidized, with an even lower affinity. d) The peroxidase can carry out two reactions: an O2-consuming and a H2O2-consuming reaction. In both reactions one NAD(P)H is consumed. In the first reaction H2O2 is formed which can be consumed in the second reaction, resulting in an overall stoichiometry of 2 NADH consumed for each O2 molecule and in the production of H2O. e) The reaction is completely blocked by cyanide, superoxide dismutase (EC 1.15.1.1) and (excess) catalase (EC 1.11.1.6), but not by antimycin A or azide. This peroxidase-mediated O2-uptake might interfere with respiratory measurements. In experiments with isolated mitochondria this interference can be prevented by the addition of catalase to the reaction mixture. The use of high concentrations of hydroxamate is not allowed because of inhibitory effects on the cytochrome pathway. In intact callus tissue hydroxamates only stimulate O2-uptake in the presence of exogenous NADH. In vivo the peroxidase does not appear to function in O2-uptake, probably because of its localization (at least partly in the cell wall) and/or its low affinity for NADH. The use of hydroxamates in the determination of cytochrome and alternative pathway activity is discussed.  相似文献   

8.
Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound‐healing process, were separated by 2‐DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell‐wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2‐DE gels revealed a time‐dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0–D2 and D4–D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound‐periderm reconstruction. Some late‐expressed proteins (D6–D8), including a suberisation‐associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound‐periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing‐periderm formation processes.  相似文献   

9.
ATP content (per g fresh weight) and energy charge were higher during incubation at 8°C than at 28°C in the early stages of callus induction of potato tuber discs ( Solanum luberosum L. cv. Bintje). After a transfer from 28°C to 8°C, ATP content increased while a sharp decline in ATP content was observed after a transfer from 8°C to 28°C. ADP and AMP pools did not increase correspondingly. When the callus discs had entered the logarithmic growth phase, the energy charge was maintained within relatively narrow limits (0.77–0.80) at all culture temperatures.  相似文献   

10.
Tubers produced from crosses between the wild potato, Solanum berthaultii Hawkes (Solanaceae), and the cultivated species Solanum tuberosum L. (Solanaceae) are resistant to potato tuber worm (PTW), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), infestation compared to those of the popular commercial North American cultivars Allegany, Atlantic, Chieftain, Katahdin, MaineChip, NorDonna, Norwis, Russet Norkotah, Snowden, and Yukon Gold. Given a choice between Atlantic and hybrid tubers, female PTW deposited ca. 50% fewer eggs on hybrid tubers than on those of Atlantic; larval survival and production of prepupae on hybrid tubers were reduced similarly. Time needed for neonates to penetrate eye buds was ca. 100 min greater on hybrid tubers compared to that on cv. Atlantic. Periderm of hybrid tubers is thicker than that of cv. Atlantic and may contribute to the delay in larval penetration of tubers and the success of initial establishment.  相似文献   

11.
Cysteine proteinase forms in sprouting potato tuber   总被引:1,自引:0,他引:1  
Transformation of plants with exogenous proteinase inhibitor genes represents an attractive strategy for the biological control of insect pests. However, such a strategy necessitates a thorough characterization of endogenous proteinases. which represent potential target enzymes for the exogenous inhibitors produced. In the present study. changes in general endoproteolytic activity were monitored during sprouting of potato ( Solanum tuberosum L. cv. Kennebec) tuber. Quantitative data obtained using standard procedures showed that an increase in cysteine proteinase (EC 3.4.22) activity occurs during sprouting. This increased activity results from the gradual appearance of new cysteine proteinase forms, as demonstrated by the use of class-specific proteinase activity gels. While only one cysteine proteinase form was present during early sprouting, at least six new active forms of the same class were shown to appear gradually after the mature tuber was sown, suggesting the involvement of a complex cysteine proteolytic system in the last stages of tuber protein breakdown. Interestingly, oryzacystatins I and II. two cysteine proleinase inhibitors potentially useful for insect control, had no effect on any tuber proteinase delected. Similar results were obtained with leaf, stem and stolon proteinases. This apparent absence of direct interference supports the potential of oryzacystatin genes for production of insect-tolerant transgenie potato plants.  相似文献   

12.
The development of axillary buds of potato (Solanum tuberosum L.) plants, cultured in vitro, was analyzed. Depending on the composition of the culture medium, the buds developed into either tubers (medium with 8% sucrose), shoots (1% sucrose), or stolons (8% sucrose and 0.5 μM gibberellin). Endogenous sugar and starch levels, and key-enzymes involved in the conversion of sucrose to starch were determined at different stages of development. Moreover, the spatial distribution of sugar levels and enzyme activities were determined within the developing structures. Glucose and fructose decreased upon tuber formation, most noticeably in the swelling parts, where also starch accumulated. The activities of sucrose synthase, fructokinase and ADP-glucose pyrophosphorylase were highest under tuber-inducing conditions, the increase being confined to the tubers, and absent in the subtending stolons. It is concluded that changes in the measured parameters, observed under tuberizing conditions, are specifically related to the formation of the tuber, and are confined to the swelling part only. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The phosphorylase isoenzyme composition of soluble preparations isolated from potato ( Solanum tuberosum L. cv. Spunta) tuber-derived callus has been studied by polyacrylamide gel electrophoresis and affinity electrophoresis. Native electrophoretic profiles indicate that dedifferentiated callus tissue contains a single form of phosphorylase that differs in primer requirement, charge and affinity towards branched α-1,4/1,6-glucans from the major phosphorylase form (phosphorylase II) in potato tuber. This latter molecular form is missing in dedifferentiated callus. However, callus phosphorylase appears to be closely related to tuber phosphorylase I, a minor form found in the original explant tissue.  相似文献   

14.
Characterization of the early events of potato tuber development   总被引:1,自引:0,他引:1  
The early events of potato ( Solanum tuberosum L. cv. Superior) tuberization were examined by using a model system of axillary bud tuber development from petiole-leaf single-node cuttings. Both fresh weight and starch accumulation were monitored to establish a developmental framework for morphological changes. Fresh weight and starch content began to increase in axillary buds after 2 days. Visible changes in bud morphology could be detected 4 days after the start of incubation. Substantial increases in both total protein and total RNA were observed at the onset of tuber morphology. Immunoblot analysis showed that the major tuber protein, patatin, could be initially detected in day 4 buds and that a 22-kDa proteinase inhibitor could be initially detected at day 8. Northern blot analysis corroborated this pattern of accumulation at the RNA level for both protein types. Substantial accumulation of the two proteinase inhibitor mRNAs occurred later than patatin mRNA accumulation. The results of this study showed that there is considerable accumulation of both protein and mRNA occurring during the early stages of tuber development prior to the substantial accumulation of the major tuber storage proteins.  相似文献   

15.
16.
17.
QTL analysis of potato tuber dormancy   总被引:4,自引:1,他引:4  
The potential loss of chemical sprout inhibitors because of public concern over the use of pesticides underscores the desirability of breeding for long dormancy of potato (Solanum tuberosum L.) tubers. Quantitative trait locus (QTL) analyses were performed in reciprocal backcrosses between S. tuberosum and S. berthaultii toward defining the complexity of dormancy. S. berthaultii is a wild Bolivian species characterized by a short-day requirement for tuberization, long tuber dormancy, and resistance to several insect pests. RFLP alleles segregating from the recurrent parents as well as from the interspecific hybrid were monitored in two segregating progenies. We detected QTLs on nine chromosomes that affected tuber dormancy, either alone or through epistatic interactions. Alleles from the wild parent promoted dormancy, with the largest effect at a QTL on chromosome 2. Long dormancy appeared to be recessive in the backcross to S. berthaultii (BCB). In BCB the additive effects of dormancy QTLs accounted for 48% of the measured phenotypic variance, and adding epistatic effects to the model explained only 4% more. In contrast, additive effects explained only 16% of the variance in the backcross to S. tuberosum (BCT), and an additional 24% was explained by the inclusion of epistatic effects. In BCB variation at all QTLs detected was associated with RFLP alleles segregating from the hybrid parent; in BCT all QTLs except for two found through epistasis were detected through RFLP alleles segregating from the recurrent parent. At least three dormancy QTLs mapped to markers previously found to be associated with tuberization in these crosses.Paper number 55 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

18.
Gas chromatographic measurements demonstrated that the content of endogenous gibberellic acid increased and that of abscisic acid decreased during storage of potato seeds, suggesting that the dormancy of the seeds is controlled by the balance between these two hormones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Regulatory involvement of abscisic acid in potato tuber wound-healing   总被引:3,自引:0,他引:3  
Rapid wound-healing is crucial in protecting potato tubers frominfection and dehydration. Wound-induced suberization and theaccumulation of hydrophobic barriers to reduce water vapourconductance/loss are principal protective wound-healing processes.However, little is known about the cognate mechanisms that effector regulate these processes. The objective of this researchwas to determine the involvement of abscisic acid (ABA) in theregulation of wound-induced suberization and tuber water vapourloss (dehydration). Analysis by liquid chromatography–massspectrometry showed that ABA concentrations varied little throughoutthe tuber, but were slightly higher near the periderm and lowestin the pith. ABA concentrations increase then decrease duringtuber storage. Tuber wounding induced changes in ABA content.ABA content in wound-healing tuber discs decreased after wounding,reached a minimum by 24 h, and then increased from the 3rd tothe 7th day after wounding. Wound-induced ABA accumulationswere reduced by fluridone (FLD); an inhibitor of de novo ABAbiosynthesis. Wound-induced phenylalanine ammonia lyase activitywas slightly reduced and the accumulation of suberin poly(phenolics)and poly(aliphatics) noticeably reduced in FLD-treated tissues.Addition of ABA to the FLD treatment restored phenylalanineammonia lyase activity and suberization, unequivocally indicatingthat endogenous ABA is involved in the regulation of these wound-healingprocesses. Similar experiments showed that endogenous ABA isinvolved in the regulation of water vapour loss, a process linkedto wax accumulation in wound-healing tubers. Rapid reductionof water vapour loss across the wound surface is essential inpreventing desiccation and death of cells at the wound site;live cells are required for suberization. These results unequivocallyshow that endogenous ABA is involved in the regulation of wound-inducedsuberization and the processes that protect surface cells fromwater vapour loss and death by dehydration. Key words: Abscisic acid, poly(aliphatic), poly(phenolic), potato, Solanum tuberosum L., suberin  相似文献   

20.
The chronological relationships between stolon formation, stolon tip swelling, tuber initiation, flowering, senescence, growth and resorption of tubers were studied under field conditions in a diploid population of potato with 238 genotypes, the parental clones and seven tetraploid cultivars. Timing of tuber initiation was not closely related to the timing of stolon formation, flowering and duration of the plant cycle. Tuber initiation very often preceded stolon branching. The number and size distribution of tubers were largely influenced by the degree of stolon branching, the length of the stolon swelling period and tuber resorption. The peak production of stolons and swollen stolon tips largely took place within the flowering period, although in most genotypes, some stolon tip swelling took place until the end of the plant cycle. More information on the general temporal relationships between events related to tuber formation and plant development will contribute to a better understanding of the physiological and genetic basis of the processes leading to the production of harvestable tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号