首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy calculations based on MM-GBSA were employed to study various zinc finger protein (ZF) motifs binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied. Calculated energies gave evidence for a relationship between binding energy and affinity of ZF motifs to their sites on DNA. ΔG values were ?15.82(12), ?3.66(12), and ?12.14(11.6) kcal/mol for finger one, finger two, and finger three, respectively. The mutations in the DNA bases reduced the value of the negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, and ΔΔG = 22 kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic energies upon mutation (r = .98). The mutations in key amino acids in the ZF motif in positions-1, 2, 3, and 6 showed reduced binding energies to DNA with correlation coefficients between total free energy and electrostatic was .99 and with Van der Waal was .93. Results agree with experimentally found selectivity which showed that Arginine in position-1 is specific to G, while Aspartic acid (D) in position 2 plays a complicated role in binding. There is a correlation between the MD calculated free energies of binding and those obtained experimentally for prepared ZF motifs bound to triplet bases in other reports (), our results may help in the design of ZF motifs based on the established recognition codes based on energies and contributing energies to the total energy.  相似文献   

2.
The accessibility of yeast 5 S RNA to modification by diethyl pyrocarbonate was compared in the free 5 S RNA molecule, 60 S subunits and whole ribosomes. All the reactive sites in the free RNA were eliminated or suppressed in ribosomes but two sites. A51 and A64, remained accessible and a slight reactivity was observed at four new sites (G30, G49, G52 and A72). Nucleotide sequences that have been implicated in initiator transfer RNA binding or subunit interactions are not accessible.  相似文献   

3.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

4.
The binding of adenosine-14C to polyuridylic acid (poly(U)) and several modified poly(U)s has been studied by equilibrium dialysis. The poly(U) was modified by addition of appropriate reagents across the 5,6-double bond of the uracil ring to form the photohydrate, photodimer, dihydrouracil, the HOBr addition product and the HSO3? addition product. Modification of the uracil rings decreases the amount of adenosine which can be bound to the poly(U); the decrease in binding is a function of the fraction of uracil rings which have been changed. Using the expression S = S0(1 ? αr)2 to relate the fraction of uracil rings modified (r) to the number of binding “sites” remaining (S), it is found that α is about 1 for all the modifications except photodimer where it is about 2. These observations are taken to mean that the loss of binding capacity of the poly(U) resulting from modifications of the uracil ring is caused by loss of planarity of the uracil rings caused by the modifications, and consequent loss of double helix structure, but that for all modifications except photodimer there is no disruption of the poly(U) double helix on either side of the leison. There does appear to be local melting on either side of the photodimer lesion. The sigmoidal binding isotherms (Ab versus Ca) of modified and unmodified poly(U) can be approximated closely by the following equation: ((1)) (1) where Ab = bound A, Ca = free A, n = minimum number of adjacent A′s in complex, S = concentration of sites on poly(U), and K1 = (Km)1/m for all mn. The stacking energy of adenosine (w) can be calculated accurately using the following equation, where dθ/d ln Ca is obtained from Eq. (1). ((2)) (2) For unmodified poly(U), w is ?2.0 kcal/mole and ΔG° (?;RT ln K1) is ?3.2 kcal/mole. The difference (?1.2 kcal/mole) is attributed to hydrogen bonding. Heavily photohydrated poly(U) does not bind guanosine or guanosine-5′-phosphate.  相似文献   

5.
Abstract: Histamine elicits its biological effects via three distinct G protein-coupled receptors, termed H1, H2, and H3. We have used guanosine 5′-(γ-[35S]thio)triphosphate (GTPγ[35S]) autoradiography to localize histamine receptor-dependent G protein activation in rat brain tissue sections. Initial studies revealed that in basal conditions, adenosine was present in tissue sections in sufficient concentrations to generate an adenosine A1 receptor-dependent GTPγ[35S] signal in several brain regions. All further incubations therefore contained 8-cyclopentyl-1,3-dipropylxanthine (10 µM), a selective A1 receptor antagonist. Histamine elicited dose-dependent increments in GTPγ[35S] binding to discrete anatomical structures, most notably the caudate putamen, cerebral cortex, and substantia nigra. The overall anatomical pattern of the histamine-evoked binding response closely reflects the known distribution of H3 binding sites and was faithfully mimicked by Nα-methylhistamine, (R)-α-methylhistamine, and immepip, three H3-selective agonists. In all regions examined, the GTPγ[35S] signal was reversed with thioperamide and clobenpropit, two potent H3-selective antagonists, whereas mepyramine, a specific H1 antagonist, and cimetidine, a prototypic H2 antagonist, proved ineffective. These data indicate that in rat brain tissue sections, GTPγ[35S] autoradiography selectively detects H3 receptor-dependent signaling in response to histamine stimulation. As the existing evidence suggests that GTPγ[35S] autoradiography preferentially reveals responses to Gi/o-coupled receptors, our data indicate that most, if not all, central H3 binding sites represent functional receptors coupling to Gi/o, the inhibitory class of G proteins. Besides allowing more detailed studies on H3 receptor signaling within anatomically restricted regions of the CNS, GTPγ[35S] autoradiography offers a novel approach for functional in vitro screening of H3 ligands.  相似文献   

6.
Abstract: Membranes from adult chicken brain have high-affinity binding sites for N6-cyclohexyl[3H]adenosine (CHA) (KD= 4 nM, Bmax = 0.6 pmol/mg protein). This CHA binding could be attributed to adenosine receptors of the A1 type, since substituted adenosine analogs, e.g. N6-(l -2-phenylisopropyl)adeno sine (IC50 = 60 nM), were very potent displacers. Binding sites for 1,3-diethyl- 8-[3H]phenylxanthine (DPX) in adult brain membranes have a moderate affinity (KD= 50 nM, Bmax = 1.5 pmol/mg). The association of DPX with these sites could be completely displaced by 8-phenyltheophylline (IC50= 300 nM) and other xanthines, but only 45% of specific DPX binding could be displaced by phenylisopropyladenosine. This suggests that about half of DPX sites are putative A1 receptors and the other half are of the A2 type. Primary cultures of pure glial and neuronal cells from chick embryo brain were also examined for adenosine receptors. Specific binding of CHA could not be detected in these preparations, but both glial and neuronal membranes have specific sites for DPX. At a [3H]DPX concentration of 20 nM, specific binding was 50% higher (per mg protein) in glial than in neuronal membranes. The maximum binding of DPX to glial membranes (Bmax= 1.6 pmol/mg) was comparable to values for adult brain, but the glial affinity (KD= 90 nM) was somewhat less. Phenylisopropyladenosine was able to displace less than 20% of the total glial sites for DPX. This finding was in accord with the lack of CHA sites and demonstrates that A1 receptors make little contribution to DPX binding in glial membranes. In decreasing order of potency, 8-phenyltheophylline, CHA, theophylline, caffeine, and 3-isobutyl-I-methylxanthine completely displace DPX association with glia. DPX binding to glial membranes thus appears due to a single class of receptors, which may prove to be of the A2 type.  相似文献   

7.
The binding positions and relative minimum binding energies are calculated for complexes of 9-aminoacridine, proflavine, N-methylphenanthridinium, and ethidium in theoretically determined intercalation sites in B-DNA (sites I and II) and in unconstrained dimer-duplex sites. The selection of site I in B-DNA by these compounds agrees with the theoretical interpretation of studies of unwinding angles in closed circular DNA in all cases but ethidium, which is predicted to select site II. The most stable binding positions of the acridines and ethidium in unconstrained dimer-duplex units agree with experimental results of intercalation complexes of dinucleoside monophosphate units. Base-pair specificity for Watson-Crick pairing is examined. The energy of an intercalation complex is partitioned into ΔE23, the energy required to open base pairs BP2 and BP3 in B-DNA to a site, and ΔEIn, the energy change when a free molecular intercalates. ΔE23 depends strongly on the base-pair sequence, whereas ΔEIn for the four molecules studied does not. The three most stable sequences contain (pyrimidine)p(purine) units, and this provides a rationale for the exclusive formation of crystals of intercalation complexes with these units. In spite of this selectivity, the distribution of G?C and A?T base pairs is equal for these three units and persists as the more unstable sequences are included. Therefore, specificity arises from the interaction between the base pairs and the 2′-deoxyribose 5′-monophosphate backbone for the opening of B-DNA to an intercalation site and not from the interaction between the chromophore and the DNA.  相似文献   

8.
Summary The binding properties of A1 adenosine receptors in brain membranes were compared in two congeneric marine teleost fishes which differ in their depths of distribution. Adenosine receptors were labeled using the A1 selective radioligand [3H]cyclohexyladenosine ([3H]CHA). The A1 receptor agonist [3H]CHA bound saturably, reversibly and with high affinity to brain membranes prepared fromSebastolobus altivelis andS. alascanus; however, the meanK d values differed significantly (Figs. 1–3, Table 1). Saturation data fit to a one site model indicated that the A1 receptor inS. alascanus exhibited a higher affinity (K d=1.49 nM) for [3H]CHA whereas A1 receptors inS. altivelis exhibited a significantly lower affinity (K d=3.1 nM). Moreover,S. altivelis, but notS. alascanus, parameter estimates for [3H]CHA binding to two sites of receptor were obtained (Fig. 3, Table 1). The mean dissociation constant values for the high and low affinity sites for [3H]CHA inS. altivelis were 0.43 nM and 16.3 nM, respectively. In equilibrium competition experiments the adenosine analogs R-phenylisopropyladenosine (R-PIA), N-ethylcarboxamidoadenosine (NECA) and S-phenylisopropyladenosine (S-PIA) all displayed higher affinities for A1 receptors inS. alascanus as compared toS. altivelis brain membranes (Table 2, Fig. 6). The specific binding of [3H]CHA was significantly increased by 0.1 and 1.0 mM MgCl2 in both fishes; however, the sensitivity (95–131% increase) ofS. altivelis to this effect was significantly greater than that ofS. alascanus (48–91% increase) (Fig. 5). The results of kinetic, equilibrium saturation and equilibrium competition experiments all suggest that A1 adenosine receptors ofS. altivelis andS. alascanus brain membranes differ with respect to their affinities for selected adenosine agonists.Abbreviations CHA cyclohexyladenosine - R-PIA R-phenylisopropyladenosine - S-PIA S-phenylisopropyladenosine - NECA N-ethylcarboxamidoadenosine - NEM N-ethylmaleimide - 2-ClAdo 2-chloroadenosine - GTP guanosine triphosphate - N protein guanine nucleotide binding protein - n H Hill slope  相似文献   

9.
Abstract

The binding characteristics of radiolabeled N6-(cyclohexyl)adenosine ([3H]CHA), N6-(R-phenylisopropyl)adenosine ([3H]R-PIA), 5′-N-ethylcarboxamidoadenosine ([3H]NECA), and 2-[4-(2-carboxyethyl)phenyl]ethyl-amino-5′-N-ethylcarboxamidoadenosine ([3H]CGS 21680), to rat testis membranes were investigated. Specific binding of [3H]CGS 21680, a selective agonist for the A2a adenosine receptor, was very modest whilst the nonselective agonist [3H]NECA bound to rat testis membranes showing high binding capacity. At least two types of binding sites for [3H]NECA could be identified in rat testis membranes: high affinity sites and high capacity sites. Selective agonists for the At adenosine receptor, [3H]CHA and [3H]R-PIA bound with high affinity to a single class of binding sites. This high affinity binding site showed the typical pharmacological specificity of the A1 adenosine receptor with a potency order for agonists of CHA R-PIA > NECA > N6-(S-phenylisopropyl)adenosine (S-PIA). In order to detect the presence of the A3 adenosine receptor in these membranes we selectively blocked the A1 receptor with a large molar excess of a xanthine antagonist, either 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) or xanthine amine congener (XAC). In the presence of an antagonist a low affinity binding site for [3H]CHA and [3H]R-PIA was detected. This low affinity binding site showed a different pharmacological specificity than the high affinity binding site. In fact the potency order for agonists was CHA NECA = R-PIA > S-PIA. This finding suggests that the low affinity binding site represents the A3 adenosine receptor.  相似文献   

10.
Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R–A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron–glia–neuron) synapse.  相似文献   

11.
Summary Presumptive astrocytes isolated from 10-day white Leghorn chick embryos, Factor VIII-positive human brain capillary endothelial cells, meningeal fibroblasts from 10-day chick embryos, Swiss mouse 3T3 cells, and human astrocytoma cell lines, SKMG-1 and U373, were rendered quiescent when placed in culture medium that contained 0 or 0.2% serum for 48 h; their proliferation was markedly reduced and they incorporated [3H]thymidine at a low rate. [3H]Thymidine incorporation and cell proliferation were induced in all types of cells by addition of guanosine, GMP, GDP, GTP, and to a lesser extent, adenosine, AMP, ADP or ATP to the culture medium. The stimulation of proliferation by adenosine and guanosine was abolished by 1,3-dipropyl-7-methylxanthine (DPMX), an adenosine A2 receptor antagonist, but not by 1,3,-dipropyl-8-(2-amino-4-chorophenyl)xanthine (PACPX), an A1 antagonist. Stimulation of proliferation by the nucleotides was not abolished by either DPMX or PACPX. The P2 receptor agonists,α,β-methyleneATP and 2-methylthioATP, also stimulated [3H]thymidine incorporation into the cells with peak activity at approximately 3.5 and 0.03 nM, respectively. These data imply that adenosine and guanosine stimulate proliferation of these cell types through activation of an adenosine A2 receptor, and the stimulation of cell proliferation by the nucleotides may be due to the activation of purinergic P2y receptors. As the primary cultures grew older their growth rate slowed. The capacity of the purine nucleosides and nucleotides to stimulate their growth diminished concomitantly. The 3T3 cells showed neither decreased growth with increased passages nor reduced response to the purines. In contrast, although the doubling time of the immortalized human astrocytoma cell lines SKMG-1 and U373 remained constant, the responsiveness to purinergic stimulation of the U373 cells decreased but that of the SKMG-1 did not. These data are compatible with a decrease in the number, or the ligand-binding affinity of the purinergic receptors, or a decreased coupling of purinergic receptors to intracellular mediators in primary cells aged in tissue culture.  相似文献   

12.
The development of adenosine A2A receptor antagonists has received much interest in recent years for the treatment of neurodegenerative diseases. Based on docking studies, a new series of 2-arylbenzoxazoles has been identified as potential A2AR antagonists. Structure-affinity relationship was investigated in position 2, 5 and 6 of the benzoxazole heterocycle leading to compounds with a micromolar affinity towards the A2A receptor. Compound F1, with an affinity of 1?μm, presented good absorption, distribution, metabolism and excretion properties with an excellent aqueous solubility (184?μm) without being cytotoxic at 100?μm. This compound, along with low-molecular weight compound D1 (Ki?=?10?μm), can be easily modulated and thus considered as relevant starting points for further hit-to-lead optimisation.  相似文献   

13.
Cooperative binding of adenosine by polyuridylic acid: a further analysis   总被引:2,自引:0,他引:2  
The dialysis data of Huang and Ts'o for the cooperative binding of adensine to polyuridylic acid are analyzed here using a grand-partition function Ising model method similar to that originally employed for polyelectrolytes by Rice and Nagasawa. An appropriate modification permitting the treatment of the sliding degeneracy of the two polyuridylic acid strands is also included. In addition to the previously estimated stacking energy of about ?6 kcal/mole one also obtains the free energy change F? for the transfer of a single adenosine molecule from a fixed site in solution to a fixed site on the polyuridylic acid. This binding energy falls in the range F? = ?140 to +620 cal/mole, indicating that binding in the 1:2 (purine: pyrimidine) complex is either very weak or repulsive. The absence of any comparable cooperative stacking of adenosines in solution at the same concentration together with the likely repulsive character of the binding implies that the stacking energy must contain a significant contribution from other processes than simple stacking of adenosines. A generalization of the theory to treat multicomponent binding and longer-range interactions is effected, and the form applicable to simultaneous binding of both adenosine and guanosine by polyuridylic acid is presented.  相似文献   

14.
Definitions are proposed for the independent and joint contributions that the chemical groups A and B make to the free energy of association of the ligand A?B with a receptor. The definitions are independent of the choice of the standard state and are consistent with the basic thermodynamic cycle relating the association of the ligands A?B, A?Y and X?B to the receptor Rappaport 1976. The basic idea is the use of the excess free energy of association of the ligand A?Y over the free energy of association of the reference ligand X?Y as the measure of the “independent” contribution of the group A to the binding. This definition allows the free energy of association of the ligand A?B to be written as the sum of the independent contributions of the groups A and B, their joint contribution, and an invariant free energy of association of the reference ligand with any receptor. With the appropriate definition of the receptor-reference ligand complex, water can be chosen as the reference ligand. Using ΔG(A?OH)?AG(HOH), ΔG(H?B?H)?ΔG(HOH) and ΔG(HO?C)?ΔG(HOH) as the definitions of the “independent” contributions of the chemical groups A, B and C to the binding of the ligand A?B?C, the joint contribution of the groups A and C to the binding is ΔG(A?B?C) ? ΔG(A?B?H) ? ΔG(H-B-C) + ΔG(H?B?H).  相似文献   

15.
A comparison was made of the uptake mechanisms of selected purine bases and nucleosides by axenically grown Entamoeba histolytica. Adenine, adenosine, and guanosine were taken up, in part, by a “carrier”-mediated system. Guanine, hypoxanthine, and inosine entered amoebas via diffusion. Inhibitor studies support the presence of individual transport sites for adenine-adenosine and adenosine-guanosine. Additional sites for transport of adenine, adenosine, and guanosine are implied by “non-productive binding” involving guanine, hypoxanthine, and inosine. Uptake of adenine, adenosine, and guanosine was reduced by iodoacetate and N-ethylmaleimide. Ribose failed to inhibit uptake of purine nucleosides.  相似文献   

16.
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, ?57.30?kcal/mol) and electrostatic solvation (ΔGsolv, ?36.86?kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand–protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1–D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.  相似文献   

17.
18.
19.
Adenosine levels are increased in stress and act as anti-oxidant and anti-inflammatory mediators by binding to 4 G-protein-coupled receptors. Using genetically modified mice lacking A1 and A3 adenosine receptors, treated with ip buthionine-[S,R]-sulphoximine injections to inhibit γ-glutamylcysteine ligase, the question was addressed whether these receptors modulate the responses to the stress related to altered glutathione levels. This study determined organ glutathione levels and expression of two sub-units of γ-glutamylcysteine ligase and the cationic xc-transporter and found that deletion of one or both adenosine receptors influenced the responses in an organ-specific manner. The lack of A1 and A3 adenosine receptors is related to decreased basal glutathione content and down-regulation of γ-glutamylcysteine ligase sub-units in several organs. Moreover, responses to buthionine-[S,R]-sulphoximine were different. For example, the lack of A3 adenosine receptors, or their blockade of A3 by MRS 1191, caused a marked increase in gene expression, which was not observed in mice lacking both A1 and A3 receptors. The results indicate that A1 and A3 adenosine receptors play a role in antioxidant responses and their role differs in an organ-specific way.  相似文献   

20.
The uranyl(VI) ion, UO, cleaves yeast tRNAPhe both thermally and photochemically. Photochemical cleavage takes place at all positions but exhibits maxima at G10, G18, G30, A38, C49 and A62. Furthermore, in the presence of stoichiometric concentrations of citrate, the cleavage is generally suppressed except that strong cleavage at positions G10 and C48–U50 persists, indicating the presence of a high-affinity metal-ion binding site. It is proposed that these photocleavage sites reflect the tertiary structure of the yeast tRNAPhe molecule in terms of D-loop/T-loop interaction and anticodon loop conformation and that uranyl-mediated photocleavage of RNA may be used as a probe of RNA tertiary structure, and in particular for identifying binding sites for divalent metal ions. Thus a high-affinity metal-ion binding site is inferred in the Rcentral pocket' formed by the D-loop, the T-loop and the acceptor stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号