首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Solid state fermentation (SSF) of canola meal has been carried out to reduce its phytic acid content using Aspergillus ficuum NRRL 3135. In certain batches, a complete reduction of phytic acid content in canola meal was achieved in 48 h. A larger amount of biomass in the inoculum and older inoculum increased the rate of phytic acid hydrolysis. The optimum moisture content of the medium was found to be 67% for phytic acid hydrolysis in an SSF process. The substitution of water in the semi-solid medium with acetate buffer resulted in faster reduction of the phytic acid content. A 15% increase in the amount of protein after 120 h of incubation was observed in the treated meal. The crude phytase preparation extracted from the canola meal after it was treated in an SSF process was also used for reduction of the phytic acid content in new batches of canola meal both in semi-solid medium and in liquid medium. In the semi-solid medium, 58% of the phytic acid was hydrolysed at 45°C in 20 h, while 100% hydrolysis was recorded at 50°C in 12 h in the liquid medium. The SSF process seems to be beneficial for the upgrading of canola meal by reducing both its phytic acid content and increasing the amount of protein.Offprint requests to: Z. Duvnjak  相似文献   

2.
Solid-state fermentation (SSF) usingAspergillus carbonarius with canola meal as a substrate showed that production of phytase was associated with growth; maximum activity was achieved after 72 h. Apparent 25% and 10% increases in the protein content of the canola meal were noticed after 48 h and 72 h, respectively but total carbohydrate concentration had fallen by 25% by the end of fermentation. The rate of decrease of phytic acid content was optimum with a moisture content between 53% and 60%; homogenization of the inoculum for 120 s led to the greatest biomass and lowest phytic acid content. Inoculation of sterile meal led to lower phytic acid contents than inoculation of non-sterile meal.The authors are with the Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada  相似文献   

3.
Summary During the growth of A. carbonarius, the rates of biomass growth, phytase production and phytic acid content reduction in canola meal media during solid state fermentation were higher in the presence of Na-oleate or Tween-80 than in the control medium which was not supplemented with these surfactants. Addition of Triton X-100 had a negative effect on the studied processes.The optimum concentration of Na-oleate in solid state culture media was 1%.  相似文献   

4.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   

5.
Solid state fermentation of canola meal has been carried out for the reduction of its phytic acid content using the following microorganisms: Rhizopus oligosporus NRRL 2990, Aspergillus niger NRC 5765 and NRC 401 121, Aspergillus ficuum NRRL 3135 and a wild Saccharomyces cerevisiae strain. The results showed that all these microorganisms can be used for the reduction of the phytic acid content in the tested material. A. ficuum which completely hydrolyzed the phytic acid in 48 hours was the most efficient. Buffered systems, aeration and an increase in inoculum concentration caused faster and higher reduction of phytic acid content in canola meal.  相似文献   

6.
Summary The influence of several factors on the biosynthesis of Schwanniomyces costellii phytase was studied in continuous culture. The level of phytase production increased with pH and dilution rate. It decreased when the phytic acid or phosphate content increased.  相似文献   

7.
Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal.  相似文献   

8.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.  相似文献   

9.
Phytase production was studied by three Mucor and eight Rhizopus strains by solid-state fermentation (SSF) on three commonly used natural feed ingredients (canola meal, coconut oil cake, wheat bran). Mucor racemosus NRRL 1994 (ATCC 46129) gave the highest yield (14.5 IU/g dry matter phytase activity) on coconut oil cake. Optimizing the supplementation of coconut oil cake with glucose, casein and (NH(4))(2)SO(4), phytase production in solid-state fermentation was increased to 26 IU/g dry matter (DM). Optimization was carried out by Plackett-Burman and central composite experimental designs. Using the optimized medium phytase, alpha-amylase and lipase production of Mucor racemosus NRRL 1994 was compared in solid-state fermentation and in shake flask (SF) fermentation. SSF yielded higher phytase activity than did SF based on mass of initial substrate. Because this particular isolate is a food-grade fungus that has been used for sufu fermentation in China, the whole SSF material (crude enzyme, in situ enzyme) may be used directly in animal feed rations with enhanced cost efficiency.  相似文献   

10.
Hegeman CE  Grabau EA 《Plant physiology》2001,126(4):1598-1608
Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases.  相似文献   

11.
The high phytase producing mutant of Aspergillus oryzae (KL-38) previously isolated was employed for koji making, and the produced koji rice then supplied for sake brewing. The alcohol fermentation was improved compared to that with the parent strain (A. oryzae BP-1). The effects of two phytase isozymes (Phy I and Phy II) produced by A. oryzae on yeast growth and inorganic phosphate liberation were investigated using a synthetic medium containing phytic acid as a sole phosphate source. Yeast growth and the liberation of inorganic phosphate were both enhanced by the combination of Phy I and Phy II at a ratio of 1 to 3, which was compatible with the production ratio in KL-38. Based on these results, phytase plays important role in sake brewing, and that the maximum inorganic phosphate liberation from phytic acid can be obtained by a suitable combination of Phy I and Phy II.  相似文献   

12.
13.
We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.  相似文献   

14.
Optimization of phytase production by solid substrate fermentation   总被引:3,自引:0,他引:3  
The production of phytase by three feed-grade filamentous fungi (Aspergillus ficuum NRRL 3135, Mucor racemosus NRRL 1994 and Rhizopus oligosporus NRRL 5905) on four commonly used natural feed ingredients (canola meal, cracked corn, soybean meal, wheat bran) was studied in solid substrate fermentation (SSF). A. ficuum NRRL 3135 had the highest yield [15 IU phytase activity/g dry matter (DM)] on wheat bran. By optimizing the supplementation of wheat bran with starch and (NH4)2SO4, phytase production increased to 25 IU/g DM. Optimization was carried out by Plackett-Burman and central composite experimental designs. Using optimized medium, phytase, phosphatase, alpha-amylase and xylanase production by A. ficuum NRRL 3135 was studied in Erlenmeyer flask and tray SSF. By scaling up SSF from flasks to stationary trays, activities of 20 IU phytase activity/g DM were reproducibly obtained. Electronic Publication  相似文献   

15.
Utilization of phytate by some yeasts   总被引:8,自引:0,他引:8  
Summary Of 21 yeast strains screened for ability to hydrolyse phytic acid salts, nine strains grew on sodium phytate as sole source of inorganic phosphate. Of the five most interesting strains for their growth parameters tested and for their phytase activity in batch-culture,Schwanniomyces castellii CBS 2863 had the highest phytase activity in presence of 5 g phytate I–1.  相似文献   

16.
The enzymatic reduction of sinapic acid ester content in canola meal using polyphenol oxidase from the fungusT. versicolor was investigated. To determine the effectiveness of this new process, the results obtained using two spectrophotometric methods and an HPLC analytical method for assaying sinapic acid ester content in the treated and untreated meals were compared. It was found that all the methods gave practically the same results when the samples from untreated canola meals were analysed. However, both of the spectrophotometric methods overestimated the sinapic acid ester content in the enzymatically treated meal by 7%–20%, as compared to the results obtained using HPLC. It was found that the sensitivity limits for the spectrophotometric methods used for the determination of sinapic acid ester content in enzymatically treated canola meals were 2.67 g and 1.47 g phenolics/kg meal for the direct and chemical spectrophotometric methods respectively. A correlation between the results obtained using the spectrophotometric and HPLC methods is given. The enzymatic treatment resulted in a negligible amount of phenolics in the treated meal.  相似文献   

17.
Changes in the levels of various phosphorus fractions and ofphytase activity in the cotyledons of young pea seedlings grownin the light have been studied. It is shown that from the onsetof germination there is a lag of several days in the hydrolysisof phytic acid and that this is associated with a low levelof phytase activity in cotyledon extracts. Rapid developmentof phytase during the next few days is accompanied by a rapidincrease in the rate of phytic acid break-down and both reachmaximum levels after 6–7 days from soaking the seed. Theamount of phytic acid in the cotyledons becomes negligible afterabout 15 days and at the same time phytase activity declinesmarkedly. At this point protease activity is at a maximum andthe water content of the cotyledons begins to fall. Removal of the shoot 4 days after soaking the seed caused animmediate decrease in export of phosphorus from the cotyledonsbut did not affect the level of phytic acid for several days.Subsequently there was a small, but significant reduction inthe rate of phytic acid hydrolysis in de-shooted seedlings ascompared with intact plants in spite of the fact that phytaseactivity was not affected for several days. Similar effectswere observed when excised cotyledons were cultured on moistfilter-paper. Control mechanisms for phytic acid hydrolysis are discussedand it is concluded that regulation by the axis of the inorganicphosphate concentration at the sites of phytase activity maybe a means of controlling phytic acid hydrolysis.  相似文献   

18.
The thermotolerant fungus, Aspergillus niger NCIM 563, was used for production of extracellular phytase on agricultural residues: wheat bran, mustard cake, cowpea meal, groundnut cake, coconut cake, cotton cake and black bean flour in solid state fermentation (SSF). Maximum enzyme activity (108 U g−1 dry mouldy bran, DMB) was obtained with cowpea meal. During the fermentation phytic acid was hydrolysed completely with a corresponding increase in biomass and phytase activity within 7 days. Phosphate in the form of KH2PO4 (10 mg per 100 g of agriculture residue) increased phytase activity. Among various surfactants added to SSF, Trition X-100 (0.5%) exhibited a 30% increase in phytase activity. The optimum pH and temperature of the crude enzyme were 5.0 and 50°C respectively. Phytase activity (86%) was retained in buffer of pH 3.5 for 24 h. The enzyme retained 75% of its activity on incubation at 55°C for 1 h. In the presence of 1 mM K+ and Zn2+, 95% and 55% of the activity were retained. Scanning electron microscopy showed a high density growth of fungal mycelia on wheat bran particles during SSF. Journal of Industrial Microbiology & Biotechnology (2000) 24, 237–243. Received 07 June 1999/ Accepted in revised form 18 December 1999  相似文献   

19.
Aspergillus carbonarius NRC 401121 phytase was produced on canola meal in a solid-state fermentation process. A Km value of 0.345 mM and a vmax of 0.81 units were determined for sodium phytate. The optimum pH and temperature were 4.7 and 53°C, respectively. Activation of the enzyme occurred when it was preincubated at higher temperatures for a period of time. The energy of activation, the entropy and the enthalpy changes were evaluated to be 7,800 cal/mole, 74 cal/(mole · K) and 24,000 cal/mole for this enzyme, respectively. The effect of time and the extractant: solid state culture ratio upon the single step extraction of phytase from a solid-state culture were evaluated. Mathematical correlations which fit the experimental data reasonably well were proposed for some of the studied processes.  相似文献   

20.
转基因植物表达植酸酶研究进展   总被引:6,自引:0,他引:6  
植酸是植物体内磷的主要存在形式,其绝大部分不能被单胃动物消化吸收,而随粪便排出体外造成环境污染;同时,植酸又是一种抗营养因子,它通过络合植物体内的一些营养成分而降低植物的营养价值。通过植物转基因方法使植物自身表达足量的植酸酶,以减小植酸带来的不利影响,是提高植物性饲料营养价值和控制环境磷污染的一种经济有效的措施。就转基因植物植酸酶的优势、研究现状、存在的问题及其发展前景进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号