首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies are described on the toxicological analysis of the piperazine-derived designer drug 1-(4-methoxyphenyl)piperazine (MeOPP) in rat urine using gas chromatography-mass spectrometry (GC-MS). The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of MeOPP and its metabolites 1-(4-hydroxy phenyl)piperazine and 4-hydroxyaniline in rat urine after administration of a single dose corresponding to doses commonly taken by drug users. Therefore, this procedure should also be suitable for detection of a MeOPP intake in human urine. However, the metabolites of MeOPP are not unique and can be produced from other drugs. Therefore, differentiation of use of this designer drug from use of the medicaments dropropizine, oxypertine or others, which are metabolized to the MeOPP isomer 1-(2-methoxyphenyl)piperazine, is discussed.  相似文献   

2.
Studies are described on the metabolism and the toxicological analysis of the new designer drug rac-p-methoxymethamphetamine (PMMA) in rat urine using gas chromatography-mass spectrometry (GC-MS). The identified metabolites indicated that PMMA was extensively metabolized mainly by O-demethylation to pholedrine and to a minor extent to p-methoxyamphetamine (PMA), 1-hydroxypholedrine diastereomers (one being oxilofrine), 4'-hydroxy-3'-methoxymethamphetamine and 4'-hydroxy-3'-methoxyamphetamine. The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of the main metabolites of PMMA in rat urine after a dose corresponding to that of drug users. Therefore, this procedure should be suitable for detection of PMMA intake in human urine via its metabolites. However, it must be considered that pholedrine and oxilofrine are also in therapeutic use. Differentiation of PMMA, PMA and/or pholedrine intake is discussed.  相似文献   

3.
4-Methylthioamphetamine (4-MTA) is a scheduled designer drug that has appeared on the illicit drug market and led to several non-fatal or even fatal poisonings. Only few data are available on its metabolism. The first aim of this study was to identify the 4-MTA metabolites in human urine and then to study whether the authors' STA procedure is suitable for screening for and identification of 4-MTA and/or its metabolites in urine. After enzymatic cleavage of conjugates, solid-phase extraction (SPE) and acetylation the following metabolites could be identified by full-scan gas chromatography-mass spectrometry (GC-MS): deamino-oxo 4-MTA, deamino-hydroxy 4-MTA, ring hydroxy and beta-hydroxy 4-MTA. 4-MTA sulfoxide could be identified as possible artifact. In urine samples after enzymatic hydrolysis, acidic extraction, and methylation, 4-methylthiobenzoic acid could be identified. The authors' systematical toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction (LLE) and acetylation allowed detection of 4-MTA as target analyte plus all the above-mentioned metabolites with the exception of 4-methylthiobenzoic acid. The extraction efficiency of 4-MTA was approximately 70% and the limit of detection (LOD) was 30 ng/ml (S/N 3).  相似文献   

4.
The designer drug 2,5-dimethoxy-4-methyl-amphetamine (DOM, STP) is known to be extensively metabolized in various species. The current study showed that cytochrome P450 2D6 was the only isoenzyme involved in formation of the main metabolite hydroxy DOM. In addition, the authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS was suitable to prove an intake of a common drug users' dose of DOM by detection of hydroxy DOM in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of DOM in human urine. However, DOM and/or other metabolites such as deamino-oxo-hydroxy DOM might be the target analyte in urine of CYP2D6 poor metabolizers.  相似文献   

5.
The phenethylamine-derived designer drug 4-bromo-2,5-dimethoxy-beta-phenethylamine (2C-B) is known to be extensively metabolized in various species including humans. In rat urine, 2C-B was found to be excreted mainly via its metabolites. In the current study, the toxicological detection of these metabolites in the authors' systematic toxicological analysis (STA) procedure was examined. The STA procedure using full-scan GC-MS allowed proving an intake of a common drug abusers' dose of 2C-B by detection of the O-demethyl deaminohydroxy and two isomers of the O-demethyl metabolites in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-B in human urine.  相似文献   

6.
The amphetamine-derived designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) is an upcoming substance on the illicit drug market. In the current study, the identification of its metabolites in rat urine and their toxicological detection in the authors' systematic toxicological analysis (STA) procedure were examined. DOI is extensively metabolized by O-demethylation and beside small amounts of parent compound it was found to be excreted mainly in form of metabolites. The STA procedure using full-scan GC-MS allowed proving an intake of a common drug users' dose of DOI by detection of the two O-demethyl metabolite isomers in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of DOI in human urine.  相似文献   

7.
Studies on the metabolism and on the toxicological analysis of mefenorex [R,S-N-(3-chloropropyl)-α-methylphenethylamine, MF] using gas chromatography-mass spectrometry (GC-MS) and fluorescence polarization immunoassay (FPIA) are described. The metabolites were identified in urine samples of volunteers by GC-MS. Besides MF, thirteen metabolites including amphetamine (AM) could be identified and three partially overlapping metabolic pathways could be postulated. For GC-MS detection, the systematic toxicological analysis procedure including acid hydrolysis, extraction at pH 8-9 and acetylation was suitable (detection limits 50 ng/ml for MF and 100 ng/ml for AM). Excretion studies showed, that only AM but neither MF nor its specific metabolites were detectable between 32 and 68 h after ingestion of 80 mg of MF. Therefore, misinterpretation can occur. The Abbott TDx FPIA amphetamine/methamphetamine II gave positive results up to 68 h. All the positive immunoassay results could be confirmed by the described GC-MS procedure.  相似文献   

8.
R,S-3',4'-Methylenedioxy-alpha-pyrrolidinopropiophenone (MDPPP) is a new designer drug with assumed amphetamine-like effects, which has appeared on the illicit drug market. The aim of this study was to identify the MDPPP metabolites using solid-phase extraction, ethylation or acetylation as well as to develop a toxicological detection procedure in urine using solid-phase extraction, trimethylsilylation and GC-MS. Analysis of urine samples of rats treated with MDPPP revealed that MDPPP was completely metabolized by demethylenation of the methylenedioxy group followed by partial 3'-methylation of the resulting catechol, oxidative desamination to the corresponding diketo compounds and/or hydroxylation of the pyrrolidine ring with subsequent dehydrogenation to the corresponding lactam. The hydroxy groups were found to be partly conjugated. Based on these data, MDPPP could be detected in urine via its metabolites by full-scan GC-MS using mass chromatography for screening and library search for identification by comparison of the spectra with reference spectra.  相似文献   

9.
R,S-alpha-pyrrolidinopropiophenone (PPP) is a new designer drug with assumed amphetamine-like effects which has appeared on the illicit drug market. The aim of this study was to identify the PPP metabolites using solid-phase extraction, ethylation or acetylation as well as to develop a toxicological detection procedure in urine using solid-phase extraction, trimethylsilylation and gas chromatography-mass spectrometry (GC-MS). Analysis of urine samples of rats treated with PPP revealed that PPP was extensively metabolized by hydroxylation of the pyrrolidine ring with subsequent dehydrogenation to the corresponding lactam, hydroxylation of the aromatic ring in position 4' or double dealkylation of the pyrrolidine ring to the corresponding primary amine (cathinone) partly followed by reduction of the keto group to the corresponding secondary alcohol (norephedrines). As cathinone and the norephedrine diastereomers are also formed after intake of other drugs of abuse or medicaments, special attention must be paid to the detection of the unequivocal metabolite 2"-oxo-PPP as an unambiguous proof for the intake of PPP. The hydroxy groups were found to be partly conjugated. Based on these data, PPP could be detected in urine via its metabolites by full-scan GC-MS using mass chromatography for screening and library search for identification by comparison of the spectra with reference spectra. The same toxicological detection procedure can be applied to other designer drugs of the pyrrolidinophenone type, like MOPPP, MDPPP, MPHP, and MPPP. The detection of the latter will also be presented here.  相似文献   

10.
Sediment in urine may contain low-molecular-weight compounds that should be included in the analysis. To date, no systematic investigation has addressed this issue. We investigated three primary factors that influence the extraction efficiency of metabolites during preparation of urine samples for metabolomic research: centrifugation, pH, and extraction solvents. Obtained with the use of gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) technique and principal component analysis (PCA), our results indicate that (1) conventional centrifugation causes an apparent loss of some metabolites, indicating that urine samples for metabolomic research should not be centrifuged before procedures are undertaken to recover the metabolites; (2) pH adjustment has a large impact on the recovery of metabolites and is therefore not encouraged; (3) with design of experiment analysis, methanol and water yield the optimal extraction efficiency. Differences between rat and human urine were observed and are discussed. Ninety-nine metabolites identified in rat and human urine are presented. An efficient protocol is proposed for the pretreatment of urine samples.  相似文献   

11.
A gas chromatography–mass spectrometry (GC–MS) procedure was developed for the detection of 4-hydroxycoumarin anticoagulants and their metabolites in urine as part of a systematic toxicological analysis procedure for acidic drugs and poisons after extractive methylation. The part of the phase-transfer catalyst remaining in the organic phase was removed by solid-phase extraction on a diol phase. The compounds were separated by capillary GC and identified by computerized MS in the full scan mode. Using mass chromatography with the ions m/z 291, 294, 295, 309, 313, 322, 324, 336, 343 and 354, the possible presence of 4-hydroxycoumarin anticoagulants and/or their metabolites could be indicated. The identity of positive signals in such mass chromatograms was confirmed by comparison of the peaks underlying full mass spectra with the reference spectra recorded during this study. This method allowed the detection of therapeutic concentrations of phenprocoumon and warfarin in human urine samples. In absence of human urine, acenocoumarol, coumachlor, coumatetrayl, pyranocoumarin (cyclocumarol) could be detected only in rat urine.  相似文献   

12.
The phenethylamine-derived designer drug 4-ethyl-2,5-dimethoxy-beta-phenethylamine (2C-E) was found to be mainly metabolized in rats by O-demethylation, N-acetylation, hydroxylation of the ethyl side chain at C2' or at C1' followed by oxidation at C1' to the corresponding ketone, by deamination followed by reduction to the corresponding alcohols or by oxidation to the corresponding acids, and finally combinations of these steps. Most of the metabolites were excreted in conjugated form. The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS allowed the detection of an intake of a dose of 2C-E in rat urine that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-E in human urine.  相似文献   

13.
Lipid-A represents the ubiquitous, covalently bound hydrophobic component of bacterial lipopolysaccharides (endotoxins). Lipid-As isolated and characterized from rhizobial species have large variations in their backbone sugars, as well as in their hydroxy fatty acid substituents. The sugar backbones consist of either glucosamine and galacturonic acid or glucosamine and 2,3-diaminoglucose. The published procedures for characterizing amide-linked fatty acids do not release all these fatty acids, hence a new method was developed to characterize the amide-linked hydroxy fatty acids. This method involves a mild methanolysis procedure to release glucosamine methyl glycosides which still contain the amide-bound hydroxy fatty acids. The products were analysed by fast atom bombardment mass spectrometry (FAB-MS) and, after trimethylsilylation, by electron impact (E.I.) and chemical ionization (C.I.) gas chromatography-mass spectrometry (GC-MS). The procedure was applied to lipid-A preparations from several gram-negative bacteria. This method allows the unequivocal identification of amide-linked hydroxy fatty acids and also allows determination of the microheterogeneity of the N-acyl substituents in lipid-As from gram-negative bacteria.  相似文献   

14.
Pyrovalerone and its hydrolated metabolite have been identified by gas chromatography-mass spectrometry in rat urine and plasma. A sensitive gas chromatographic method for the quantitative analysis of pyrovalerone in rat urine and plasma is described. The method also permits the quantitative monitoring of the urinary excretion of the drug and its metabolite. Pyrovalerone and its hydroxylated metabolite are detected up to 18 h after a single oral administration to the rat at a dose of 20 mg/kg.  相似文献   

15.
Abstract— The identification of 3-methoxy-4-hydroxyphenylethanol (MOPET) in human cerebrospinal fluid and in rat brain is described. Use was made of the high sensitivity and selectivity provided by gas chromatography-mass spectrometry. Concentrations of MOPET in human cerebrospinal fluid, rat brain and rat urine together with those of some other catecholamine metabolites are given. The effect of intraperitoneal administration of deuterium-labelled MOPET and haloperidol on rat brain and urine MOPET levels was studied. The quantitative importance of MOPET as an end product of central and peripheral dopamine metabolism in man and rat is discussed.  相似文献   

16.
The propionylpromazine concentrations in plasma after intramuscular administration to horses were determined using gas chromatography with nitrogen-phosphorus detection. After hydrolysis by β-glucuronidase/arylsulphatase, the parent drug and three metabolites were detected in urine. The metabolites were identified as 2-(1-hydroxypropyl)promazine, 2-(1-propenyl)promazine and 7-hydroxypropionylpromazine by gas chromatography-mass spectrometry. No N-demethylated or sulphoxidated metabolites of propionylpromazine were observed in the horse urine.  相似文献   

17.
An improved gas chromatography-mass spectrometry method has been applied to the quantitation of both in vitro and in vivo products of lipid peroxidation in rat liver stimulated with carbon tetrachloride. The method avoids problems of autoxidation of unsaturated fatty acids during sample preparation, and the sensitivity permits assays on as little as 1 mg of tissue. This permits small samples of tissue to be obtained by biopsy from the same organ, thus making it possible to perform in vivo time studies on a single animal. Lipids from whole tissue or cell preparations are simultaneously extracted and reduced by catalytic hydrogenation and then saponified and derivatized to their pentafluorobenzyl esters and trimethylsilyl ethers. Quantitation is accomplished by negative ion chemical ionization gas chromatography-mass spectrometry, using either deuterated compounds or naturally occurring fatty acid metabolites as internal standards. Hydroxy fatty acids which result from reduction of the hydroperoxides of arachidonic and docosapentaenoic acids are found to increase within 20 min after exposure of liver or hepatocyte suspensions to carbon tetrachloride.  相似文献   

18.
The metabolism in mice of 4-methylpyrazole (4-MP), a potent inhibitor of alcohol dehydrogenase, has been investigated using gas chromatography and gas chromatography-mass spectrometry techniques. Radioactive 4-MP was synthesized to aid in the isolation of the metabolites. Of the administered radioactivity, 84% was recovered in the urine 24 hours after treatment. Analysis of the urine revealed the presence of several metabolites including 4-hydroxymethylpyrazole, 4-carboxypyrazole and 4-methylpyrazole-N-glucosiduronic acid, along with the parent compound, 4-methylpyrazole.  相似文献   

19.
A new technique for the conversion of 2-acetylaminofuorene and several ring-hydroxylated metabolites to mono- and di-tert.-butyldimethylsilyl derivatives was developed to permit their analysis by gas chromatography-mass spectrometry in order to quantify the metabolism of 2-acetylaminofluorene incubated in freshly isolated rat hepatocytes. This new gas chromatography-mass spectrometry method allowed the separation, identification and quantitation of seven known metabolites comprising five arylhydroxylated compounds, 2-aminofuorene and N-hydroxy-2-acetylaminofuorene.Abbreviations 2-AAF 2-acetylaminofluorene - 2-AF 2-aminofluorene - DMF dimethylformamide - El electron impact ionization - FBS fetal bovine serum - GC-MS gas chromatography-mass spectrometry - MtBSTFA N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide - MU methylene unit - N-OH-2-AAF N-hydroxy-2-acetylaminofluorene - 4,4-OH-BP 4,4-hydroxybiphenyl - tBDMS tert.-butyldimethylsilyl  相似文献   

20.
Methodology is presented for the identification of codorphone and its metabolites in urine samples using gas chromatography mass spectrometry. The procedure focuses on the clean-up of biological samples and a derivatization technique suitable for these samples. Sep-Pak C-18 cartridges were employed in the clean-up procedure permitting the biological sample to be derivatized in a relatively small volume of reagents. The derivatization procedure incorporated a one-step trimethylsilyloxime reaction to prevent enol formation while simultaneously derivatizing free hydroxyl groups with the excess trimethylsilylimidazole present in the reaction mixture. This was followed by the addition of BSTFA directly to this reaction mixture to complete derivatization of any metabolites possessing dealkylation of the nitrogen. Using this derivatization scheme, synthetic metabolites were analyzed by gas chromatography mass spectrometry, and their mass spectra were characterized emphasizing the diagnostic fragment ions observed in the spectra. To illustrate the usefulness of this methodology, a urine sample obtained from a dog that had been dosed with codorphone was analyzed by gas chromatography mass spectrometry, and the metabolites were identified by comparison to the mass spectra of the synthetic derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号