首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with diabetes mellitus are likely to develop certain complication such as retinopathy, nephropathy and neuropathy as a result of oxidative stress and overwhelming free radicals. Treatment of diabetic patients with antioxidant may be of advantage in attenuating these complications. Oleuropein, the active constituent of olive leaf (Olea europaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of oleuropein in reducing oxidative stress and hyperglycemia in alloxan-induced diabetic rabbits. After induction of diabetes, a significant rise in plasma and erythrocyte malondialdehyde (MDA) and blood glucose as well as alteration in enzymatic and non-enzymatic antioxidants was observed in all diabetic animals. During 16 weeks of treatment of diabetic rabbits with 20 mg/kg body weight of oleuropein the levels of MDA along with blood glucose and most of the enzymatic and non-enzymatic antioxidants were significantly restored to establish values that were not different from normal control rabbits. Untreated diabetic rabbits on the other hand demonstrated persistent alterations in the oxidative stress marker MDA, blood glucose and the antioxidant parameters. These results demonstrate that oleuropein may be of advantage in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggest that administration of oleuropein may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

2.
In this study, alterations in the liver antioxidant enzymes status and lipid peroxidation in short-term (8-weeks) and long-term (24-weeks) diabetic rats were examined. Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) levels were significantly increased, but superoxide dismutase (SOD) activity was significantly reduced in 8-weeks diabetic rats, compared to control. Catalase (CAT) activity, however, was found unchanged. In 24-weeks diabetic rats, while GSH-Px activity was unchanged, but SOD and CAT activities and MDA levels were significantly increased, compared to control. These results suggest that diabetes-induced alterations in tissue antioxidant system may reflect a generalized increase in tissue oxidative stress. It can be concluded that lipid peroxidation and antioxidant enzyme levels are elevated in diabetic condition. Hence, diabetes mellitus, if left untreated, may increase degenerative processes due to accumulation of oxidative free radicals.  相似文献   

3.
Increased oxidative stress has been suggested to be involved in the pathogenesis and progression of diabetic tissue damage. The aim of this study was to investigate the effect of different phosphodiesterase inhibitors on lipid peroxidation and total antioxidant capacity (TAC) of plasma in streptozotocin-induced diabetic rats (Rattus norvegicus). Rats became diabetic by a single administration of streptozotocin (STZ, 45 mg/kg). The effects of 15-days treatment by milrinone, sildenafil, and theophylline as cyclic-AMP and -GMP phosphodiesterase inhibitors (PDEIs) on diabetes-induced oxidative stress were studied. The levels of glucose, malonedialdehyde (MDA) the by product of lipid peroxides, and TAC (FRAP test) were estimated in plasma of control and experimental groups of rats. A significant increase in the levels of plasma glucose, and MDA and a concomitant decrease in the levels of TAC were observed in diabetic rats. These alterations were reverted back to near normal level after the treatment with PDEIs. Treatment of diabetic rats by PDEIs reduced MDA levels and increased TAC in the order of milrinone>sildenafil>theophylline. In conclusion, the present investigation show that PDIS possesses antioxidant activities, which may be attributed to their enhancing effect on cellular cyclic nucleotides contributing to the protection against oxidative stress in streptozotocin-induced diabetes. Exact mechanism of protective actions of cAMP- and cGMP-phosphodiesterase remains to be elucidated by further studies. This finding may suggest a place for PDEIs in maintaining health in diabetes.  相似文献   

4.
During exercise, the oxygen consumption and the production of free radicals increase and can lead to oxidative stress with a deleterious effect on cellular structures involved in physical activity. To evaluate the oxidative stress produced by exercise and the role of ascorbate as an antioxidant, venous blood samples were obtained from 44 thoroughbred racehorses, before and after a 1000+/-200-m race at maximum velocity. Fourteen of these horses were treated intravenously with 5 g of ascorbate before running. Antioxidant capacity (PAOC), endogenous and exogenous ascorbate concentration, total antioxidant reactivity (TAR), urate concentration, creatine kinase activity, protein concentration and thiobarbiturate reactive substances (TBAR) as oxidative stress indicators were measured in the plasma of some of these horses. PAOC, TAR and TBAR increased after the race, while plasma ascorbate and urate concentrations remained unchanged. Total plasma protein (TPP) concentrations increased in line with antioxidant capacity. As predicted, both the plasma ascorbate concentration and PAOC increased immediately after ascorbate administration, but was not modified after the race, such as TBAR. However, in both groups plasma creatine kinase activity increased after the race. These results would suggest that the administration of ascorbate could nullify the oxidative stress produced by exercise in thoroughbred racehorses, but could not prevent muscular damage.  相似文献   

5.
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 +/- 5.3 microM) but not in those with normal baseline ascorbate (51.81 +/- 2.3 microM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant.  相似文献   

6.
The effects of oral zinc supplementation on lipid peroxidation and the antioxidant defense system of alloxan (80-90 mg/kg)-induced diabetic rabbits were examined. Forty-five New Zealand male rabbits, 1 year old, weighing approximately 2.5 kg, were allocated randomly and equally as control, diabetic, and zinc-supplemented diabetic groups. After diabetes was induced, zinc-supplemented diabetic rabbits had 150 mg/L of zinc as zinc sulfate (ZnSO(4)) in their drinking tap water for 3 months. The feed and water consumption was higher in diabetic groups than (P<0.01) healthy rabbits. The body weight was lower in diabetic rabbits compared to control. The blood glucose levels were higher in diabetic groups than controls. The elevated plasma malondialdehyde (MDA) levels were determined in the diabetic group (P<0.01). The glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and ceruloplasmin levels in the diabetic group were decreased by the effect of diabetes but there was no difference between zinc-supplemented diabetic and control rabbits. Serum zinc concentrations were lower in diabetic rabbits but iron (Fe) and copper (Cu) levels in sera were not different among the groups. As a result, it was concluded that daily zinc supplementation could reduce the harmful effects of oxidative stress in diabetics.  相似文献   

7.
Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (alpha-tocopherol). We have tested the hypothesis that alpha-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 microM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received alpha-tocopherol supplements (400 IU RRR-alpha-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-kappaB in isolated resting monocytes, nor any effect of alpha-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and alpha-tocopherol concentration. In conclusion, alpha-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

8.
The aim of this study is to determine the relation between diabetes and vaginal candidiasis in terms of oxidative biomarker levels in a vaginal candidiasis model of the diabetic rats by evaluating malondialdehyde (MDA), sulphydrile groups or glutathione (RSH), and ascorbic acid (C vit) levels. All rats were randomly divided into five groups. All of the groups were observed for 21 days. In the treated diabetes groups, MDA (0.90, 0.68 nmol/ml and 3.78, 3.79 nmol/g tissue, plasma and vaginal tissue, respectively) and RSH (227, 171 nmol/100 ml 0.38, 0.37 μmol/g tissue, plasma and vaginal tissue, respectively) levels were found to be decreased while the levels of C vit were found to be increased (0.49, 0.37 μmol/l 2.39, 2.01 nmol/g tissue plasma, and vaginal tissue, respectively) (P < 0.05). In the groups of untreated diabetes, vaginal candidiasis were found to be more serious and oxidative biomarkers were found to be increased (MDA 1.30, 1.26 nmol/ml and 7.82, 2.37 nmol/g tissue and RSH 258, 145 nmol/100 ml and 0.31, 0.46 μmol/g tissue) while the antioxidant C vit levels were found to be decreased (0.24, 0.17 μmol/l 1.33, 2.66 nmol/g tissue) (P < 0.05). RSH, plasma MDA, blood glucose, and tissue MDA levels of vaginal candidiasis embedeled diabetic rats, were found to be higher than those in untreated diabetic and untreated vaginitis enbedeled rats ‹P < 0.05’. Vaginal candidiasis caused oxidative stress in diabetic rats working together. Systemic oxidative stress biomarkers were found to be affected from vaginal candidiasis although it was a local mucosal infection. This study was presented as a poster in the conference of ‹2nd Trends in Medical Mycology, 23–26 October 2005, Berlin, Germany’.  相似文献   

9.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

10.
To assess the effects of short-term and long-term vitamin C supplementation in humans on plasma antioxidant status and resistance to oxidative stress, plasma was obtained from 20 individuals before and 2h after oral administration of 2g of vitamin C, or from eight subjects enrolled in a vitamin C depletion-repletion study using increasing daily doses of vitamin C from 30 to 2500 mg. Plasma concentrations of ascorbate, but not other physiological antioxidants, increased significantly after short-term supplementation, and increased progressively in the long-term study with increasing vitamin C doses of up to 1000 mg/day. Upon incubation of plasma with a free radical initiator, ascorbate concentrations were positively correlated with the lag phase preceding detectable lipid peroxidation. We conclude that vitamin C supplementation in humans dose-dependently increases plasma ascorbate concentrations and, thus, the resistance of plasma to lipid peroxidation ex vivo. Plasma and body saturation with vitamin C in humans appears desirable to maximize antioxidant protection and lower risk of oxidative damage.  相似文献   

11.
The diabetic state confers an increased propensity to accelerated atherogenesis. In addition to the established risk factors, there is evidence for increased oxidative stress and inflammation in diabetes. Increased oxidative stress is manifested by increased lipid peroxidation (e.g. increased F2-isoprostanes) and increased DNA damage. Evidence for increased inflammation includes increased monocyte superoxide and pro-inflammatory cytokine release (IL-1, IL-6, and TNF-alpha), increased monocyte adhesion to endothelium and increased levels of plasma C-reactive protein, the prototypic marker of inflammation. Most importantly, alpha tocopherol therapy, especially at high doses, clearly shows a benefit with regards to LDL oxidation, isoprostanes and a decrease in inflammatory markers such as C-reactive protein, pro-inflammatory cytokines and PAI-1 levels. Thus, it appears that, in diabetes, alpha tocopherol therapy could emerge as an additional therapeutic modality.  相似文献   

12.
The diabetic state confers an increased propensity to accelerated atherogenesis. In addition to the established risk factors, there is evidence for increased oxidative stress and inflammation in diabetes. Increased oxidative stress is manifested by increased lipid peroxidation (e.g. increased F 2 -isoprostanes) and increased DNA damage. Evidence for increased inflammation includes increased monocyte superoxide and pro-inflammatory cytokine release (IL-1, IL-6, and TNF- &#102 ), increased monocyte adhesion to endothelium and increased levels of plasma C-reactive protein, the prototypic marker of inflammation. Most importantly, alpha tocopherol therapy, especially at high doses, clearly shows a benefit with regards to LDL oxidation, isoprostanes and a decrease in inflammatory markers such as C-reactive protein, pro-inflammatory cytokines and PAI-1 levels. Thus, it appears that, in diabetes, alpha tocopherol therapy could emerge as an additional therapeutic modality.  相似文献   

13.
Nutritional supplementation with dehydroepiandrosterone (DHEA) may be a candidate for treating diabetes-induced vascular and neural dysfunction. DHEA is a naturally occurring adrenal androgen that has antioxidant properties and is reportedly reduced in diabetes. Using a prevention protocol, we found that dietary supplementation of streptozotocin-induced diabetic rats with 0.1, 0.25, or 0.5% DHEA caused a concentration-dependent prevention in the development of motor nerve conduction velocity and endoneurial blood flow impairment, which are decreased in diabetes. At 0.25%, DHEA significantly prevented the diabetes-induced increase in serum thiobarbituric acid-reactive substances and sciatic nerve conjugated diene levels. This treatment also reduced the production of superoxide by epineurial arterioles of the sciatic nerve. DHEA treatment (0.25%) significantly improved vascular relaxation mediated by acetylcholine in epineurial vessels of diabetic rats. Sciatic nerve Na+-K+-ATPase activity and myoinositol content was also improved by DHEA treatment, whereas sorbitol and fructose content remained elevated. These studies suggest that DHEA, by preventing oxidative stress and perhaps improving sciatic nerve Na+-K+-ATPase activity, may improve vascular and neural dysfunction in diabetes.  相似文献   

14.
Diabetes mellitus is the most common serious metabolic disorder and it is considered to be one of the five leading causes of death in the world. Hyperglycemia-mediated oxidative stress plays a crucial role in diabetic complications. Hence, this study was undertaken to evaluate the protective effect of esculetin on the plasma glucose, insulin levels, tissue antioxidant defense system and lipid peroxidative status in streptozotocin-induced diabetic rats. Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. Extent of oxidative stress was assessed by the elevation in the levels of lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD); reduction in the enzymic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST); nonenzymic antioxidants Vitamin C, E and reduced glutathione (GSH) were observed in the liver and kidney tissues of diabetic control rats as compared to control rats. Oral supplementation of esculetin to diabetic rats for 45 days significantly brought back lipid peroxidation markers, enzymic and nonenzymic antioxidants to near normalcy. Moreover, the histological observations evidenced that esculetin effectively rescues the hepatocytes and kidney from hyperglycemia mediated oxidative damage without affecting its cellular function and structural integrity. These findings suggest that esculetin (40 mg/kg BW) treatment exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic and renal tissues. Further, detailed studies are in progress to elucidate the molecular mechanism by which esculetin elicits its modulatory effects in insulin signaling pathway.  相似文献   

15.
Abstract

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

16.
Intense exercise induces inflammatory-like changes and oxidative stress in immune cells. Our aim was to study the effects of antioxidant diet supplementation on the neutrophil inflammatory response and on the tocopherol associated protein (TAP) expression after exhaustive exercise. Fourteen male-trained amateur runners were randomly divided in two placebo and supplemented groups. Vitamins C (152 mg/d) and E (50 mg/d) supplementation were administrated to the athletes for a month, using an almond based isotonic and energetic beverage. Non-enriched beverage was given to the placebo group. After one month, the subjects participated in a half-marathon race (21 km-run). Neutrophil TAP mRNA expression and markers of the inflammatory response were determined before, immediately after, and 3 h after finishing the half-marathon race. TAP expression increased after exercise mainly in the neutrophils of the placebo group. Exercise induced an inflammatory response in both placebo and supplemented groups, manifested with neutrophilia, increased creatine kinase and lactate dehydrogenase serum activities, neutrophil luminol chemiluminescence and myeloperoxidase release. Plasma malondialdehyde only increased in the placebo group after exercise. Diet supplementation with moderate levels of antioxidant vitamins avoids plasma damage in response to exhaustive exercise without the effects on the inflammatory process. Neutrophil degranulation and increased tocopherol associated protein could contribute to the neutrophil protection from the oxidative stress.  相似文献   

17.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.  相似文献   

18.
Chemotherapy and radiation therapy are associated with increased formation of reactive oxygen species and depletion of critical plasma and tissue antioxidants. In patients undergoing high-dose chemotherapy, the plasma antioxidant concentration has been shown to decrease. However, these studies in which the oxidative stress status were investigated have a small number of patients and they are heterogeneous. In this study, the changes in certain trace elements together with oxidative stress parameters were investigated in 36 patients who had undergone autologous stem cell transplantation because of solid and hematological malignancies. Blood samples of the patients were examined before the high-dose chemotherapy (baseline), before stem cell transplantation (day -1), and after stem cell transplantation on day 1, 3, and 6. Erythrocyte zinc, silver, and iron levels were measured by atomic absorption spectrophotometry; malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were measured by UV-vis spectrophotometry. After high-dose chemotherapy, significant increases in the levels of MDA, GSH-Px, and SOD were observed. On the other hand, Cu levels remained the same while the levels of erythrocyte Zn and Fe were increased. Significant correlation was observed among MDA, GSH-Px, and SOD (p<0.05). High-dose chemotherapy gives rise to an increase in the oxidative stress and the reactive oxygen species. Standard parenteral nutrition protocols were found to be insufficient to lower this stress.  相似文献   

19.
Determination of reliable bioindicators of diabetes-induced oxidative stress and the role of dietary vitamin E supplementation were investigated. Blood (plasma) chemistries, lipid peroxidation (LPO), and antioxidant enzyme activities were measured over 12 weeks in New Zealand White rabbits (control, diabetic, and diabetic + vitamin E). Cholesterol and triglyceride levels did not correlate with diabetic state. PlasmaLPOwas influenced by diabetes and positively correlated with glucose concentration only, not cholesterol or triglycerides. Liver glutathione peroxidase (GPX) activity negatively correlated with glucose and triglyceride levels. Plasma and erythrocyte GPX activities positively correlated with glucose, cholesterol, and triglyceride concentrations. Liver superoxide dismutase activity positively correlated with glucose and cholesterol concentration. Vitamin E reduced plasma LPO, but did not affect the diabetic state. Thus, plasmaLPOwas the most reliable indicator of diabetes-induced oxidative stress. Antioxidant enzyme activities and types of reactive oxygen species generated were tissue dependent. Diabetes-induced oxidative stress is diminished by vitamin E supplementation.  相似文献   

20.
Yue KK  Chung WS  Leung AW  Cheng CH 《Life sciences》2003,73(20):2557-2570
Almost all diabetic complications are known to be associated with vascular dysfunctions of different tissues. Oxidative stress, on the other hand, has been implicated in the pathogenesis of diabetes mellitus. Therefore in the present study we have investigated the correlation between redox status and oxidative stress in the eyes, aorta and kidneys of streptozotocin (STZ)-induced diabetic rats. Glutathione (GSH), the primary endogenous antioxidant, and malondialdehyde (MDA), a marker of oxidative stress, were measured in these tissues of diabetic rats at different time points after STZ injection. Our results showed that GSH was reduced significantly in both the eyes and aorta of diabetic rats 8 weeks after STZ injection (43% and 66% of the control, respectively). Furthermore, the depletion of GSH occurred from the first week after STZ injection, and the level remained low as compared with the control rats (both week 1 and week 8: 43% and 66% of the control in the eyes and aorta, respectively). MDA was not increased until week 8 onwards after STZ-injection (177% and 93% of the control in the eyes and aorta, respectively). These changes, however, were not found in the kidneys, in which the GSH was slightly increased and MDA remained comparable to the control rats. These results indicate different tissues respond differently to high glucose conditions as redox changes and oxidative stress occurred only in the eyes and aorta but not in the kidneys of diabetic rats. In addition, the onset of oxidative stress is preceded by a depletion of GSH and probably an exhaustion of the antioxidant defense system. Furthermore, administration of Vitamin E was found to normalize MDA levels in the eyes and aorta but not in the kidneys of diabetic rats. In summary, our results suggest that the underlying mechanism in developing diabetic complications in the eyes and aorta involves the occurrence of oxidative stress, which may not be the case in diabetic kidneys. In addition, Vitamin E may prevent the development of diabetic complications in the eyes and aorta by reducing lipid peroxidation and oxidative damage in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号