首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surfactant protein C (SP-C) is an important constituent of lung surfactant (LS) and, along with SP-B, is included in exogenous surfactant replacement therapies for treating respiratory distress syndrome (RDS). SP-C's biophysical activity depends upon the presence of a rigid C-terminal helix, of which the secondary structure is more crucial to functionality than precise side-chain chemistry. SP-C is highly sequence-conserved, suggesting that the β-branched, aliphatic side chains of the helix are also important. Nonnatural mimics of SP-C were created using a poly-N-substituted glycine, or “peptoid,” backbone. The mimics included varying amounts of α-chiral, aliphatic side chains and α-chiral, aromatic side chains in the helical region, imparting either biomimicry or structural rigidity. Biophysical studies confirmed that the peptoids mimicked SP-C's secondary structure and replicated many of its surface-active characteristics. Surface activity was optimized by incorporating both structurally rigid and biomimetic side chain chemistries in the helical region indicating that both characteristics are important for activity. By balancing these features in one mimic, a novel analogue was created that emulates SP-C's in vitro surface activity while overcoming many of the challenges related to natural SP-C. Peptoid-based analogues hold great potential for use in a synthetic, biomimetic LS formulation for treating RDS.  相似文献   

2.
The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.  相似文献   

3.
Poly-N-substituted glycines or "peptoids" are protease-stable peptide mimics. Although the peptoid backbone is achiral and lacks hydrogen-bond donors, substitution with alpha-chiral side chains can drive the formation of stable helices that give rise to intense CD spectra. To systematically study the solution properties and stability of water-soluble peptoid helices with alpha-chiral side chains, we have synthesized and characterized an amphipathic, 36-residue N-substituted glycine oligomer. CD was used to investigate effects of concentration and solvent environment on this helical peptoid. We saw no significant dependence of helical structure on concentration. Intense, "alpha-helix-like" CD spectra were observed for the 36-mer in aqueous, 2,2,2-trifluorethanol (TFE), and methanol solution, proving a relative insensitivity of peptoid helical structure to solvent environment. While CD spectra taken in these different solvents were fundamentally similar in shape, we did observe some interesting differences in the intensities of particular CD bands in the various solvents. For example, the addition of TFE to an aqueous solvent increases the degree of peptoid helicity, as is observed for polypeptide alpha-helices. Moreover, the helical structure of peptoids appears to be virtually unaffected by heat, even in an aqueous buffer containing 8 M urea. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role of steric forces in their structural stabilization. The structured polypeptoids studied here may have potential as robust mimics of helical polypeptides of therapeutic interest.  相似文献   

4.
Hydrophobic lung surfactant proteins B and C (SP-B and SP-C) are critical for normal respiration in vertebrates, and each comprises specific structural attributes that enable the surface-tension-reducing ability of the lipid-protein mixture in lung surfactant. The difficulty in obtaining pure SP-B and SP-C on a large scale has hindered efforts to develop a non-animal-derived surfactant replacement therapy for respiratory distress. Although peptide-based SP-C mimics exhibit similar activity to the natural protein, helical peptide-based mimics of SP-B benefit from dimeric structures. To determine if in vitro surface activity improvements in a mixed lipid film could be garnered without creating a dimerized structural motif, a helical and cationic peptoid-based SP-B mimic was modified by SP-C-like N-terminus alkylation with octadecylamine. “Hybridized” mono- and dialkylated peptoids significantly decreased the maximum surface tension of the lipid film during cycling on the pulsating bubble surfactometer relative to the unalkylated variant. Peptoids were localized in the fluid phase of giant unilamellar vesicle lipid bilayers, as has been described for SP-B and SP-C. Using Langmuir-Wilhelmy surface balance epifluorescence imaging (FM) and atomic force microscopy (AFM), only lipid-alkylated peptoid films revealed micro- and nanostructures closely resembling films containing SP-B. AFM images of lipid-alkylated peptoid films showed gel condensed-phase domains surrounded by a distinct phase containing “nanosilo” structures believed to enhance re-spreading of submonolayer material. N-terminus alkylation may be a simple, effective method for increasing lipid affinity and surface activity of single-helix SP-B mimics.  相似文献   

5.
Sarker M  Waring AJ  Walther FJ  Keough KM  Booth V 《Biochemistry》2007,46(39):11047-11056
Surfactant protein B (SP-B) is essential for normal lung surfactant function, which is in itself essential to life. However, the molecular basis for SP-B's activity is not understood and a high-resolution structure for SP-B has not been determined. Mini-B is a 34-residue peptide with internal disulfide linkages that is composed of the N- and C-terminal helical regions of SP-B. It has been shown to retain similar activity to full-length SP-B in certain in vitro and in vivo studies. We have used solution NMR to determine the structure of Mini-B in the presence of micelles composed of the anionic detergent sodium dodecyl sulfate (SDS). Under these conditions, Mini-B forms two alpha-helices connected by an unstructured loop. Mini-B possesses a strikingly amphipathic surface with a large positively charged patch on one face of the peptide and a large hydrophobic patch on the opposite face. A tryptophan side chain extends outward from the peptide in a position to interact with lipids at the polar/apolar interface. Interhelix interactions are stabilized by both disulfide bonds and by interleaving of hydrophobic side chains from the two helices.  相似文献   

6.
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.  相似文献   

7.
Surfactant protein C (SP-C) is a hydrophobic lipopeptide that is critical for lung function, in part because it physically catalyzes the formation of surface-associated surfactant reservoirs. Many of SP-C's key biophysical properties derive from its highly stable and hydrophobic α-helix. However, SP-C's posttranslational modification with N-terminal palmitoyl chains also seems to be quite important. We created a new (to our knowledge) class of variants of a synthetic, biomimetic family of peptide mimics (peptoids) that allow us to study the functional effects of biomimetic N-terminal alkylation in vitro. Mimics were designed to emulate the amphipathic patterning, helicity, and hydrophobicity of SP-C, and to include no, one, or two vicinal amide-linked, N-terminal octadecyl chains (providing a reach equivalent to that of natural palmitoyl chains). Pulsating bubble surfactometry and Langmuir-Wilhelmy surface balance studies showed that alkylation improved biomimetic surface activities, yielding lower film compressibility and lower maximum dynamic surface tensions. Atomic force microscopy studies indicated that alkyl chains bind to and retain segregated interfacial surfactant phases at low surface tensions by inducing 3D structural transitions in the monolayer's fluid-like phase, forming surfactant-associated reservoirs. Peptoid-based SP-C mimics are easily produced and purified, and offer much higher chemical and secondary structure stability than polypeptide-based mimics. In surfactant replacements intended for medical use, synthetic SP mimics reduce the odds of pathogen contamination, which may facilitate the wider use of surfactant treatment of respiratory disorders and diseases.  相似文献   

8.
Wang Y  Rao KM  Demchuk E 《Biochemistry》2003,42(14):4015-4027
The location and depth of each residue of lung pulmonary surfactant protein B (SP-B(1-25)) in a phospholipid bilayer (PB) was determined by fluorescence quenching using synthesized single-residue-substituted peptides that were reconstituted into 1,2-dipalmitoyl phosphatidylcholine (DPPC)-enriched liposomes. The single-residue substitutions in peptides were either aspartate or tryptophan. The aspartate was subsequently labeled with the N-cyclohexyl-N'-(4-(dimethylamino)naphthyl)carbodiimide (NCD-4) fluorophore, whereas tryptophan is autofluorescent. Spin-labeled compounds, 5-doxylstearic acid (5-DSA), 7-doxylstearic acid (7-DSA), 12-doxylstearic acid (12-DSA), 4-(N,N-dimethyl-N-hexadecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-16), and 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxy iodide (CAT-1), were used in the quenching experiments. The effective quenching order is determined by the accessibility of the quencher to a fluorescent group on the peptide. The order of quenching efficiency provides information about the relative locations of individual residues in the PB. Our data indicate that residues Phe1-Pro6 are located at the surface of PB, residues Tyr7-Trp9 are embedded in PB, and residues Leu10-Ile22 are involved in an amphipathic alpha-helix with its axis parallel to the surface of PB; residues Pro23-Gly25 reside at the surface. The effects of intermolecular disulfide bond formation in the SP-B(1-25) dimer were also investigated. The experiments suggest that the SP-B helix A has to rotate at an angle to form a disulfide bond with the neighboring cysteine, which makes the hydrophobic sides of the amphipathic helices face each other, thus forming a hydrophobic domain. The detailed topographical mapping of SP-B(1-25) and its dimer in PB provides new insights into the conformational organization of the lung pulmonary surfactant proteins in the environment that mimics the native state. The environment-specific conformational flexibility of the hydrophobic domain created by SP-B folding may explain the key functional properties of SP-B including their impact on phospholipid transport between the lipid phases and in modulating the cell inflammatory response during respiratory distress syndrome.  相似文献   

9.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

10.
Although the effects of surfactant protein B (SP-B) on lipid surface activity in vitro and in vivo are well known, the relationship between molecular structure and function is still not fully understood. To further characterize protein structure-activity correlations, we have used physical techniques to study conformation, orientation, and molecular topography of N-terminal SP-B peptides in lipids and structure-promoting environments. Fourier transform infrared (FTIR) and CD measurements of SP-B1-25 (residues 1-25) in methanol, SDS micelles, egg yolk lecithin (EYL) liposomes, and surfactant lipids indicate the peptide has a dominant helical content, with minor turn and disordered components. Polarized FTIR studies of SP-B1-25 indicate the long molecular axis lies at an oblique angle to the surface of lipid films. Truncated peptides were similarly examined to assign more accurately the discrete conformations within the SP-B1-25 sequence. Residues Cys-8-Gly-25 are largely alpha-helix in methanol, whereas the N-terminal segment Phe-1-Cys-8 had turn and helical propensities. Addition of SP-B1-25 spin-labeled at the N-terminal Phe (i.e., SP-B1-25) to SDS, EYL, or surfactant lipids yielded electron spin resonance spectra that reflect peptide bound to lipids, but retaining considerable mobility. The absence of characteristic radical broadening indicates that SP-B1-25 is minimally aggregated when it interacts with these lipids. Further, the high polarity of SP-B1-25 argues that the reporter on Phe-1 resides in the headgroup of the lipid dispersions. The blue-shift in the endogenous fluorescence of Trp-9 near the N-terminus of SP-B1-25 suggests that this residue also lies near the lipid headgroup. A summary model based on the above physical experiments is presented for SP-B1-25 interacting with lipids.  相似文献   

11.

Background

Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.

Methodology/Results

FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.

Conclusion

Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.  相似文献   

12.
Peptoids, oligomers of N-substituted glycine, have been valuable targets for study and diverse application as peptidomimetics and as nanomaterials. Their conformational heterogeneity has made the study of peptoid structures using high-resolution analyses challenging, limiting our understanding of the physiochemical features that mediate peptoid folding. Here, we introduce a new method for the study of peptoid structure that relies on the environmentally sensitive fluorescence properties of 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN). We have prepared a 4-DMN-functionalized primary amine that is compatible with the traditional submonomer peptoid synthesis methods and incorporated it sequence-specifically into 11 of 13 new peptoids. When included as a peptoid side chain modification, the fluorescence emission intensity of 4-DMN correlates with predictions of the fluorophore's local polarity within a putative structure. 4-DMN fluorescence is maximized when the fluorophore is placed in the middle of the hydrophobic face of an amphiphilic helical peptoid. When the fluorophore is placed near the peptoid terminus or on a polar face of an amphiphilic sequence, 4-DMN fluorescence is diminished. Disruption of the peptoid secondary structure or amphiphilicity also modulates 4-DMN fluorescence. The peptoids' helical secondary structures are moderately disrupted by inclusion of a 4-DMN-modified side chain as evaluated by changes in the peptoids' CD spectral features. This new method for peptoid structure evaluation should be a valuable complement to existing peptoid structural analysis tools.  相似文献   

13.
Non-natural, sequence-specific peptidomimetic oligomers are being designed to mimic bioactive peptides, with potential therapeutic application. Cationic, facially amphipathic helical beta-peptide oligomers have been developed as magainin mimetics. Non-natural mimics of HIV-Tat protein, lung surfactant proteins, collagen, and somatostatin are also being developed. Pseudo-tertiary structure in beta-peptides and peptoids may herald the creation of entirely artificial proteins.  相似文献   

14.
15.
Atomistic molecular dynamics simulations and structural bioinformatics tools enable the identification of the exact mode of interaction between model pulmonary surfactant components. Two nanosecond long simulations of the N-terminal region of human surfactant protein-B (SP-B(1-25)) in dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers of different lipid surface densities reveal the preferential affinity of SP-B(1-25) for anionic phospholipids. In particular, arginine 12 and lysine 24 interact strongly and with high specificity with the phosphate group of the DPPG lipids, stabilizing the position, the orientation, and the secondary structure of the peptide in the monolayer. The peptide lies at an oblique angle to the interfacial plane, ranging between 47 degrees and 62 degrees, increasing with decreasing lipid surface density. In DPPC monolayers the interaction is largely determined by hydrophobic interactions. The non-specific nature of DPPC-SP-B(1-25) interactions allows for significant flexibility in the topology of the peptide in the lipid matrix. Bioinformatics tools are employed to generalize the simulation results to the sequences of SP-B(1-25) in other organisms. The importance of specific residues, and the role of the largely helical and amphiphilic nature of the peptide in the functionality of SP-B(1-25) are established. The synergy of classical mechanics tools with bioinformatics methods greatly enhances the molecular-level interpretation of pulmonary surfactant action and facilitates the development of design rules for synthetic surfactant analogues.  相似文献   

16.
Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.  相似文献   

17.
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.  相似文献   

18.
Antimicrobial peptides (AMPs) are critical components of the innate immune system and exhibit bactericidal activity against a broad spectrum of bacteria. We investigated the use of N‐substituted glycine peptoid oligomers as AMP mimics with potent antimicrobial activity. The antimicrobial mechanism of action varies among different AMPs, but many of these peptides can penetrate bacterial cell membranes, causing cell lysis. We previously hypothesized that amphiphilic cyclic peptoids may act through a similar pore formation mechanism against methicillin‐resistant Staphylococcus aureus (MRSA). Peptoid‐induced membrane disruption is observed by scanning electron microscopy and results in a loss of membrane integrity. We demonstrate that the antimicrobial activity of the peptoids is attenuated with the addition of polyethylene glycol osmoprotectants, signifying protection from a loss of osmotic balance. This decrease in antimicrobial activity is more significant with larger osmoprotectants, indicating that peptoids form pores with initial diameters of ~2.0–3.8 nm. The initial membrane pores formed by cyclic peptoid hexamers are comparable in diameter to those formed by larger and structurally distinct AMPs. After 24 h, the membrane pores expand to >200 nm in diameter. Together, these results indicate that cyclic peptoids exhibit a mechanism of action that includes effects manifested at the cell membrane of MRSA. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 227–236, 2015.  相似文献   

19.
Conformational control in peptoids, N-substituted glycines, is crucial for the design and synthesis of biologically-active compounds and atomically-defined nanomaterials. While there are a growing number of structural studies in solution, most have been performed with conformationally-constrained short sequences (e.g., sterically-hindered sidechains or macrocyclization). Thus, the inherent degree of heterogeneity of unconstrained peptoids in solution remains largely unstudied. Here, we explored the folding landscape of a series of simple peptoid tetramers in aqueous solution by NMR spectroscopy. By incorporating specific 13C-probes into the backbone using bromoacetic acid-2-13C as a submonomer, we developed a new technique for sequential backbone assignment of peptoids based on the 1,n-Adequate pulse sequence. Unexpectedly, two of the tetramers, containing an N-(2-aminoethyl)glycine residue (Nae), had preferred conformations. NMR and molecular dynamics studies on one of the tetramers showed that the preferred conformer (52%) had a trans-cis-trans configuration about the three amide bonds. Moreover, >80% of the ensemble contained a cis amide bond at the central amide. The backbone dihedral angles observed fall directly within the expected minima in the peptoid Ramachandran plot. Analysis of this compound against similar peptoid analogs suggests that the commonly used Nae monomer plays a key role in the stabilization of peptoid structure via a side-chain-to-main-chain interaction. This discovery may offer a simple, synthetically high-yielding approach to control peptoid structure, and suggests that peptoids have strong intrinsic conformational preferences in solution. These findings should facilitate the predictive design of folded peptoid structures, and accelerate application in areas ranging from drug discovery to biomimetic nanoscience.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号