首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Homologous recombination in human embryonic stem cells   总被引:24,自引:0,他引:24  
  相似文献   

2.
3.
小鼠基因剔除动物模型越来越广泛地应用于哺乳动物基因功能与疾病的研究。然而每当胚胎干细胞同源重组的效率过低时,鉴定与分离带有定位变异的阳性克隆就会既费力又昂贵。本工作以类固醇受体共激活子基因为例,研究出一种快速鉴定阳性克隆的新方法。在构造重组载体时,将一段编码半乳糖苷酶的DNA序列整合到共激活子基因的蛋白起始码后面。于是,在干细胞内同源重组发生以后,半乳糖苷酶的表达就会受控于内源性共激活子基因的启动子。在载体与半乳糖苷酶DNA随机整合的大多数非特异克隆中,因为缺少启动子或由于不正确的氨基酸编码连接,导致合成半乳糖苷酶的可能性较小。因此,在半乳糖苷酶染色阳性的克隆中,具有特异突变的阳性克隆可以富集30倍以上。从半乳糖苷酶的阳性克隆中,再用Southern Blot方法进一步确认带有基因剔除的阳性克隆就大大减少了工作量。因为半乳糖苷酶的细胞化学染色法简便而可靠,所以在重组效率低时,可以用这种方法在短期内筛选大量克隆。但是应该注意,应用该方法的前提条件是所研究的基因必须在胚胎干细胞内表达。这些方法更为重要的意义在于当带有基因剔除的胚胎干细胞发育成小鼠后,半乳糖苷酶的组化染色法可以轻而易举地用来揭示所研究基因在动物不同组织与细胞中的表达水平。  相似文献   

4.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

5.
研究BPOZ基因缺失对细胞生长和分化的影响.以高浓度的G418筛选BPOZ基因杂合缺失型ES细胞,PCR鉴定抗高浓度G418细胞克隆基因型;半定量RTPCR分析3种基因型ES细胞BPOZ基因的表达情况,分析3种基因型ES细胞Oct34基因的表达以明确ES细胞分化状态.利用3种基因型ES细胞进行细胞生长曲线和3H胸嘧啶核苷参入实验比较其生长速度和增殖能力.以裸鼠荷瘤实验和类胚体形成实验比较BPOZ基因纯合缺失型ES细胞与野生型ES细胞生长分化能力.结果表明,筛选获得两个BPOZ基因剔除的纯合ES细胞克隆;筛选得到的纯合ES细胞中BPOZ基因表达完全缺失,细胞处未分化状态.与野生型ES细胞相比,BPOZ基因纯合缺失型ES细胞生长受抑,增殖能力减弱.BPOZ基因纯合缺失型ES细胞可分化形成类胚体和具备来自3个不同胚层的细胞和组织的畸胎瘤.BPOZ基因剔除使ES细胞生长受抑,对ES细胞分化发育没有明显影响.  相似文献   

6.
7.
Rothenberg ME  Clarke MF  Diehn M 《Cell》2010,143(2):184-186
Gene profiling experiments have revealed similarities between cancer and embryonic stem (ES) cells. Kim et al. (2010) dissect the gene expression signature of ES cells into three functional modules and find that the Myc module, including genes targeted by Myc-interacting proteins, accounts for most of the similarity between ES and cancer cells.  相似文献   

8.
Tong C  Huang G  Ashton C  Li P  Ying QL 《Nature protocols》2011,6(6):827-844
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell-based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats.  相似文献   

9.
Embryonic stem (ES) cells are typically derived from the inner cell mass of the preimplantation blastocyst and can both self-renew and differentiate into all the cells and tissues of the embryo. Because they are pluripotent, ES cells have been used extensively to analyze gene function in development via gene targeting. The embryonic stem cell is also an unsurpassed starting material to begin to understand a critical, largely inaccessible period of development. If their differentiation could be controlled, they would also be an important source of cells for transplantation to replace cells lost through disease or injury or to replace missing hormones or genes. Traditionally, ES cells have been differentiated in suspension culture as embryoid bodies, named because of their similarity to the early postimplantation-staged embryo. Unlike the pristine organization of the early embryo, differentiation in embryoid bodies appears to be largely unpatterned, although multiple cell types form. It has recently been possible to separate the desired cell types from differentiating ES cells in embryoid bodies by using cell-type-restricted promoters driving expression of either antibiotic resistance genes or fluorophores such as EGFP. In combination with growth factor exposure, highly differentiated cell types have successfully been derived from ES cells. Recent technological advances such as RNA interference to knock down gene expression in ES cells are also producing enriched populations of cells and elucidating gene function in early development.  相似文献   

10.
11.
Cell differentiation is regulated by spatial and temporal coordination of gene expressions. Previously, we have established an embryonic stem (ES) cell differentiation system that can trace early cardiovascular developmental process in vitro. Here we show that tetracycline-induced short hair-pin RNA (shRNA) expression in differentiating ES cells successfully suppressed stage-specific genes for differentiation and modified cell fates. We established ES cell lines carrying shRNA gene driven by tRNA(val) promoter with tetracycline operator sequences (tet-ON system). When expression of vascular endothelial growth factor receptor-2 (VEGFR2) gene, a vascular progenitor and mesoderm marker and an essential gene for endothelial cell (EC) differentiation, was suppressed by shRNA in early ES cell differentiation, appearance of VEGFR2(+) mesoderm cells was substantially reduced. Suppression of VEGFR2 expression at mesoderm stage almost completely inhibited EC differentiation from VEGFR2(+) mesoderm cells. This novel experimental system, thus, can selectively determine stage-specific roles of genes in differentiation in vitro.  相似文献   

12.
13.
14.
Embryonic stem (ES) cells, derived from the inner cell mass of the preimplantation mouse embryo, are used increasingly as an experimental tool for the investigation of early mammalian development. The differentiation of these cells in vitro can be used as an assay for factors that regulate early developmental decisions in the embryo, while the effects of altered gene expression during early embryogenesis can be analyzed in chimeric mice generated from modified ES cells. The experimental versatility of ES cells would be significantly increased by the development of systems which allow precise control of heterologous gene expression. In this paper, we report that ES cells are responsive to alpha and beta interferons (IFNs). This property has been exploited for the development of inducible ES cell expression vectors, using the promoter of the human IFN-inducible gene, 6-16. The properties of these vectors have been analyzed in both transiently and stably transfected ES cells. Expression was minimal or absent in unstimulated ES cells, could be stimulated up to 100-fold by treatment of the cells with IFN, and increased in linear fashion with increasing levels of IFN. High levels of induced expression were maintained for extended periods of time in the continuous presence of the inducing signal or following a 12-h pulse with IFN. Treatment of ES cells with IFN did not affect their growth or differentiation in vitro or compromise their developmental potential. This combination of features makes the 6-16-based expression vectors suitable for the functional analysis of developmental control control genes in ES cells.  相似文献   

15.
16.
Gene delivery to embryonic stem cells   总被引:1,自引:0,他引:1  
Since the establishment of embryonic stem (ES) cells and the identification of tissue-specific stem cells, researchers have made great strides in the analysis of the natural biology of such stem cells for the development of therapeutic applications. Specifically, ES cells are capable of differentiating into all of the cell types that constitute the whole body. Thus, ES cell research promises new type of treatments and possible cures for a variety of debilitating diseases and injuries. The potential medical benefits obtained from stem cell technology are compelling and stem cell research sees a bright future. Control of the growth and differentiation of stem cells is a critical tool in the fields of regenerative medicine, tissue engineering, drug discovery, and toxicity testing. Toward such a goal, we present here an overview of gene delivery in ES cells, covering the following topics: significance of gene delivery in ES cells, stable versus transient gene delivery, cytotoxicity, suspension versus adherent cells, expertise, time, cost, viral vectors for gene transduction (lentiviruses, adenoviruses, and adeno-associated viruses, chemical methods for gene delivery, and mechanical or physical gene delivery methods (electroporation, nucleofection, microinjection, and nuclear transfer).  相似文献   

17.
胚胎干细胞(embryonic stem cells,ESCs)是从囊胚的内细胞团分离出来的多潜能干细胞,具有多向分化的能力。将外源基因导入ES细胞建立转基因动物,对于研究外源基因的功能和调控具有一定的价值。载有外源性基因的病毒在感染ES细胞后,可通过囊胚注射获得具有胚系遗传的该转基因动物,并且这一外源基因可以稳定遗传和表达。该研究主要是利用携带hPML-RARα基因的慢病毒感染小鼠ES细胞系(R1),获得携带该基因的ES细胞,感染后的ES细胞核型正常。在此基础上,将感染后的ES细胞经囊胚注射,获得了携带有hPML-RARα基因的3只嵌合小鼠,其中,有1只具有遗传特性。对嵌合体小鼠与C57杂交的后代给予强力霉素(doxycycline)处理,3天以后骨髓细胞hPML-RARα基因开始表达,这证明了在小鼠体内该外源基因表达的可诱导性。以上证实,已经成功利用ES细胞建立了可诱导的白血病转基因小鼠模型。  相似文献   

18.
19.
Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号