首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of Pax6 in development of the cerebellar system.   总被引:18,自引:0,他引:18  
Post-mitotic neurons generated at the rhombic lip undertake long distance migration to widely dispersed destinations, giving rise to cerebellar granule cells and the precerebellar nuclei. Here we show that Pax6, a key regulator in CNS and eye development, is strongly expressed in rhombic lip and in cells migrating away from it. Development of some structures derived from these cells is severely affected in Pax6-null Small eye (Pax6(Sey)/Pax6(Sey)) embryos. Cell proliferation and initial differentiation seem unaffected, but cell migration and neurite extension are disrupted in mutant embryos. Three of the five precerebellar nuclei fail to form correctly. In the cerebellum the pre-migratory granule cell sub-layer and fissures are absent. Some granule cells are found in ectopic positions in the inferior colliculus which may result from the complete absence of Unc5h3 expression in Pax6(Sey)/Pax6(Sey) granule cells. Our results suggest that Pax6 plays a strong role during hindbrain migration processes and at least part of its activity is mediated through regulation of the netrin receptor Unc5h3.  相似文献   

2.
3.
Pax6 has been implicated in cerebellar granule cell development, however the neonatal lethality of the Sey/Sey mutant has precluded a more detailed study of this late developing neuronal type. In this study we use experimental mouse chimeras made from wildtype and Pax6-null embryos to circumvent early lethality and assess the developmental potential of mutant cells in the construction of the cerebellum. We have identified the granule cell as a direct target of mutant gene action, with glia and Purkinje cells being affected in what is largely a non-cell autonomous manner.Most dramatically, in postnatal day 21 (P21) chimeras, mutant cells are largely absent in the anterior and posterior cerebellum while present in central lobules, but amidst disorganized cerebellar architecture. Analysis of P0/1 and P10 chimeras demonstrates a profound temporally based defect where mutant cells colonize the anterior and posterior EGL but fail to migrate to the IGL. Mutant granule cells in the central lobules can reach the IGL in an abnormal manner, with large streams of cells forming raphes through the molecular layer.These studies provide new insights into the role of Pax6 in postnatal cerebellar development that pinpoint the granule cell as an intrinsic target of the mutant gene and key events in the life of the developing granule cell that depend upon normal Pax6 expression.  相似文献   

4.
Postnatal cerebellum development involves the generation of granule cells and Bergmann glias (BGs). The granule cell precursors are located in the external germinal layer (EGL) and the BG precursors are located in the Purkinje layer (PL). BGs extend their glial fibers into the EGL and facilitate granule cells' inward migration to their final location. Growth arrest specific gene 1 (Gas1) has been implicated in inhibiting cell-cycle progression in cell culture studies (G. Del Sal et al., 1992, Cell 70, 595--607). However, its growth regulatory function in the CNS has not been described. To investigate its role in cerebellar growth, we analyzed the Gas1 mutant mice. At birth, wild-type and mutant mice have cerebella of similar size; however, mature mutant cerebella are less than half the size of wild-type cerebella. Molecular and cellular examinations indicate that Gas1 mutant cerebella have a reduced number of granule cells and BG fibers. We provide direct evidence that Gas1 is required for normal levels of proliferation in the EGL and the PL, but not for their differentiation. Furthermore, we show that Gas1 is specifically and coordinately expressed in both the EGL and the BGs postnatally. These results support Gas1 as a common genetic component in coordinating EGL cell and BG cell proliferation, a link which has not been previously appreciated.  相似文献   

5.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

6.
Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey(2)/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey(2)/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey(2)+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey(2)/+ rats likely have some phenotypic components of autism.  相似文献   

7.
8.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

9.
BDNF stimulates migration of cerebellar granule cells   总被引:20,自引:0,他引:20  
During development of the nervous system, neural progenitors arise in proliferative zones, then exit the cell cycle and migrate away from these zones. Here we show that migration of cerebellar granule cells out of their proliferative zone, the external granule cell layer (EGL), is impaired in Bdnf(-/-) mice. The reason for impaired migration is that BDNF directly and acutely stimulates granule cell migration. Purified Bdnf(-/-) granule cells show defects in initiation of migration along glial fibers and in Boyden chamber assays. This phenotype can be rescued by exogenous BDNF. Using time-lapse video microscopy we find that BDNF is acutely motogenic as it stimulates migration of individual granule cells immediately after addition. The stimulation of migration reflects both a chemokinetic and chemotactic effect of BDNF. Collectively, these data demonstrate that BDNF is directly motogenic for granule cells and provides a directional cue promoting migration from the EGL to the internal granule cell layer (IGL).  相似文献   

10.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

11.
12.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

13.
The rate of cerebellar granule cell migration is altered by neonatal hypo- and hyperthyroidism in a manner similar to previously reported effects on the growth of granule cell axons, the parallel fibers, suggesting that the two processes may be intimately linked. Altered rates of granule cell acquisition in these experimental animals reflect changes in germinal cell proliferation in the external granular layer (EGL), movement of postmitotic cells within the EGL, as well as the rate and time course of granule cell migration. Results of this study support the hypothesis that granule cells migrate to the internal granular layer by translocation of the cell body through the descending portion of the growing parallel fiber, rather than by amoeboid-like migration of the perikaryon trailing the elongating parallel fiber behind.  相似文献   

14.
15.
16.
17.
During postnatal development of the cerebellum, granule cell precursors (GCPs) proliferate in the external granular layer (EGL), exit the cell cycle, differentiate, and migrate from the EGL to the internal granular layer. In the present study, we report that type 2 and 3 inositol 1,4,5-trisphosphate (IP3) receptors (IP3R2 and IP3R3) regulate the differentiation of GCPs after postnatal day 12 (P12). 5-Bromodeoxyuridine labeling experiments revealed that in mutant mice lacking both of these receptors (double mutants) a greater number of GCPs remain undifferentiated after P12. Consequently, the EGL of the double mutants is thicker than that of control mice at this age and thereafter. In addition, granule cells remain in the EGL of the double mutants at P21, an age when migration has concluded in wild-type mice. Whereas differentiation of GCPs was reduced in the double mutants, the absence of IP3R2 and IP3R3 did not affect the doubling time of GCPs. We conclude that intracellular calcium release via IP3R2s and IP3R3s promotes the differentiation of GCPs within a specific interval of postnatal development in the cerebellum.  相似文献   

18.
19.
Neurogenesis in the cerebellum proceeds through a temporal series of cell production from two separate epithelia, the ventricular zone (VZ) and the external granule cell layer (EGL). Using the laacZ cell lineage tracer in transgenic mice, we describe cellular clones whose dates of birth span the entire period of cerebellar development and deduce a sequence of cell dispersion leading to the final allocation of cells in the cerebellum. Clones probably labeled early during neural tube formation show that individual progenitors can give rise to all cerebellar cell types. The distribution of clonally related granule cells in these clones indicates a mediolateral organization of EGL progenitors already established before the allocation of the EGL progenitors to the cerebellum. Clones restricted to the cerebellar VZ show that the VZ derives progenitors for deep nuclei and multipotent cortical progenitors, which lose their systematic lineage relationship when longitudinal cell intermingling in the cerebellar VZ becomes more limited. The small clones also show that cell dispersion is radial in the internal granule layer and tangential in the molecular layer. Together, the data demonstrate the broad maintenance of the relative order of cells from neural tube stages to the adult cerebellum.  相似文献   

20.
In the gastrointestinal mucosa, cell migration plays a crucial role in the organization and maintenance of tissue integrity but the mechanisms involved remain incompletely understood. Here, we used small-interfering RNA (siRNA)-mediated depletion of focal adhesion kinase (FAK) protein to determine the role of FAK in wound-induced migration and cytoskeletal organization in the non-transformed intestinal epithelial cells IEC-6 and IEC-18 stimulated with the G protein-coupled receptors (GPCR) agonist lysophosphatidic acid (LPA). Treatment of these cells with FAK siRNA substantially reduced FAK expression, but did not affect the expression of proline-rich tyrosine kinase 2 (Pyk2). Knockdown of FAK protein significantly inhibited LPA-induced migration of both IEC-18 and IEC-6 cells. LPA induced reorganization of actin and microtubule cytoskeleton in the leading edge was largely inhibited in FAK siRNA-transfected IEC-18 cells. Interestingly, in contrast to the FAK-/- cells, which exhibit an increased number of prominent focal adhesions when plated on fibronectin, FAK knockdown IEC-18 cells exhibited dramatically decreased number of focal adhesions in response to both LPA and fibronectin as compared with the control cells. We also used siRNAs to knockdown Pyk2 expression without reducing FAK expression. Depletion of Pyk2 did not prevent LPA-induced migration or cytoskeletal reorganization in IEC-18 cells. In conclusion, our study shows that FAK plays a critical role in LPA-induced migration, cytoskeletal reorganization, and assembly of focal adhesions in intestinal epithelial cells whereas depletion of Pyk2 did not interfere with any of these responses elicited by LPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号