首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anacystis nidulans was grown in white light of two different intensities, 7 and 50 W ·m?2. The in vivo pigmentations of the two cultures were compared. The ratio phycocyanin/chlorophyll a was 0.96 for cells grown at 7 W · m?2 and 0.37 for cells grown at 50 W · m?2. Phycocyanin-free photosynthetic lamellae (PSI-particles) were prepared, using French press treatment and fractionated centrifugation. Algae grown in the irradiance of 50 W · m?2 showed a chlorophyll a/P700 ratio of 260, while algae grown at 7 W · m?2 had a value of 140. Corresponding PSI-particles showed values of 122 and 109 respectively. Light-induced absorption difference spectra measured between 400–450nm indicated different ratios between cytochrome f and P700 in the two algal cultures. Enhancement studies of photosynthetic oxygen evolution were carried out. When a background beam of 691 nm was superimposed upon a signal beam of 625 nm, good enhancement was observed for both cultures. With the wavelengths 675 and 691 nm together a pronounced enhancement could be detected only in algae grown at the higher light level. Absorption spectra recorded on whole cells at 77°K revealed a small shift of the main red chlorophyll a absorption peak caused by light intensity. It is proposed that the reduction of the phycocyanin/chlorophyll a ratio in high light-grown cells is accompanied by an increased energy distribution by chlorophyll a into PSII.  相似文献   

2.
Analyses of chlorophylls a and b and P700 in the wheat leaves grown for 8 days under illumination with white light at different intensities suggested selective formation of photosystem 1 of the photosynthesis at low light intensities. This was confirmed for the two types of chloroplasts isolated from leaves grown at light intensities of 1.1 and 240 μ W/cm2, respectively, by measuring their pigment compositions, activities of photosystems 1 and 2, and absorption and fluorescence spectra. The chloroplasts developed at the low intensity showed properties only of photosystem 1 while those developed at the high intensity showed properties of both photosystems 1 and 2. Only photosystem 1 particles were obtained by fractionation of low intensity chloroplasts by treatment with digitonin followed by centrifugation, while high intensity chloroplasts could be fractionated into photosystem-1 and photosystem-2 particles. When the leaves grown at low light intensity were illuminated with strong light, photosystem 2 was developed. The fluorescence emission spectrum of low intensity chloroplasts at 77°K showed two peaks at 685 and 734 nm, and the spectrum of high intensity chloroplasts showed three peaks at 685, 697 and 740 nm.  相似文献   

3.
Young plants of Laminaria hyperborea collected from the field were grown for 2·5–4 weeks in blue, green, red and white (simulated underwater) light fields at 5, 20 and 100 μmol m-2s-1. The absolute concentrations of all pigments showed little variation with irradiance in green and white light, but decreased in high irradiances of red and blue light. The ratio of fucoxanthin to chlorophyll a also increased in the latter treatments, as did the chlorophyll c:a ratio in bright red light. There was little difference in the action spectrum for photosynthesis between the different light qualities at any one irradiance, but the action spectra for plants grown at 100 μmol m-2s-1 showed deeper troughs and higher peaks than those for plants grown at lower irradiances. Gross photosynthesis per unit of thallus area at 10 μmol m-2s-1 decreased in plants with low total pigment concentrations, but the photosynthesis per unit of pigment concentration increased. This suggestion of self-shading of pigment molecules within the algal thalli was supported by a flattening of the action spectrum in plants with higher chlorophyll a contents. The variations observed between the action spectra for different plants could thus be attributed to the decrease in pigment content at high irradiances, and not to the light quality in which the plants were grown.  相似文献   

4.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

5.
1. Chlorobium limicola forma sp. thiosulfatophilum was cultivated at 22 and 22000 lux. 2. The content of bchl d on a protein basis in the low light intensity cultures was about twice that of the high light intensity cultures. 3. After growth at 22 lux the red bchl d peak was at c. 743 nm, while at the higher intensity this peak was at c. 732 nm. 4. Electron microscopy of thin sections of Chlorobium revealed that vesicle size was greater at the low light intensity than at the high. 5. This was confirmed by sucrose density gradient centrifugation of differentially 14C-labelled vesicles from cultures grown at the two intensities. 6. The optimum temperature for growth was about 35°C. Incubation at the optimum temperature was particularly beneficial at high light intensity.Abbreviation bchl bacteriochlorophyll  相似文献   

6.
Anacystis nidulans grown under high and low light, 100 and 10 μE m?2 s?1, respectively, was analyzed with respect to chlorophyll/P700, phycobiliproteins/P700, chlorophyll/cell, and oxygen evolution parameters. The photosynthetic unit sizes of this cyanobacterium, measured as the ratio of total chromophores (chlorophyll and bilin) to P700, were shown to be similar to those of higher plants and green algae. High light grown cells possessed a photosynthetic unit consisting of a core of 157 ± 6 chlorophyll a molecules per P700 associated with a light harvesting system of 95 ± 3.5 biliprotein chromophores. Low light grown cells had substantially more biliprotein chromophores per P700 (125 ± 3.1) than high light cells, but showed no significant difference in the numbers of chlorophyll a molecules per P700 (149 ± 4). Analyses of aqueous biliprotein extracts indicate that low light grown cells produce proportionately more phycocyanin relative to allophycocyanin than high light cells. Calculations of the molecular weight of biliproteins per P700 suggest that there is less than one phycobilisome per reaction center I under both growth conditions. Differences in chlorophyll/cell ratios and oxygen evolution characteristics were also observed. High light cells contain 6.3 × 10?12 mg chlorophyll cell?1, while low light grown cells contain 12.8 × 10?12 mg chlorophyll cell?1. Photosynthetic oxygen evolution rate vs. light intensity curves indicate that high light grown cells reach maximal levels of oxygen evolution at higher light intensity than low light grown cells. Maximal rates of oxygen evolution were 16.6 μmol oxygen min?1 (mg chlorophyll)?1 for high and 8.4 μmol oxygen min?1 (mg chlorophyll)?1 for low light cells. Maximal oxygen evolution rates per cell were equivalent for both cell types, although the amount of P700 per cell was lower in high light cells. High light grown cells are therefore capable of producing more oxygen per reaction center I than low light grown cells.  相似文献   

7.
Dunaliella bardawil Ben-Amotz & Avron accumulates high concentrations of β-carotene when grown under high light intensity. The β-carotene is composed mainly of 9-cis and all-trans β-carotene. Accumulation of β-carotene and an increase in the ratio of the 9-cis to the all-trans isomer are strongly dependent on the light intensity under which the algae are cultivated but are independent of light quality within the photosynthetically active radiation range. Cells grown under continuous red (>645 nm) or white light of 500 W·m?2 reach a value of about 32 pg β-carotene·cell?1 and a ratio of 9-cis to all-trans β-carotene of around 2, whereas cells grown under low red or white light intensity of 25 W·m?2 contain about 3 pg·cell?1 and a ratio of isomers of around 0.3.  相似文献   

8.
The effects of light and nitrogen deficiency on biomass, fatty acid content and composition were studied in Parietochloris incisa, the unicellular freshwater chlorophyte accumulating very high amounts of arachidonic-acid-rich triacylglycerols. P. incisa cultures grown on complete nutrient medium and under high light (400 μmol photons m− 2 s−1) showed the highest rate of growth in comparison to medium (200 μmol photons m−2 s−1) and low (35 μmol photons m−2 s−1) light intensity. Cultures grown under high light (on complete BG-11 medium) attained higher volumetric contents of total fatty acids and arachidonic acid due to greater increase in biomass. Nitrogen starvation brought about a strong increase in the arachidonic acid proportion of total fatty acids. Thus, adjustments to cultivation conditions could serve as an efficient tool for manipulation of yield and relative content of arachidonic acid in P. incisa. The significance of the changes in lipid metabolism for adaptation of P. incisa to high-light stress and nitrogen deficiency is also discussed.  相似文献   

9.
Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) with red/blue photon flux ratio of 7: 1 and under illumination with high-pressure sodium lamp (HPSL) at photon flux densities of 391 ± 24 μmol/(m2 s) (“normal irradiance”) and 107 ± 9 μmol/(m2 s) (“low irradiance”) in photosynthetically active range. At normal irradiance, the leaf area in plants grown under HPSL was twofold higher than in LED-illuminated plants; other parameters of leaf mesostructure were little affected by spectral quality of incident light. The lowering of growth irradiance reduced the majority of leaf mesostructure parameters in plants grown under illumination with HPSL, whereas in LED-illuminated plants the lowered irradiance reduced only specific leaf weight but increased the leaf thickness and dimensions of mesophyll cells and chloroplasts. The photochemical activity of isolated chloroplasts was almost independent of growth irradiance and light spectral quality. Light quality and intensity used for plant growing had a considerable impact on PP in chloroplasts. At normal light intensity, the highest activity of noncyclic PP in chloroplasts was observed for plants grown under HPSL; at low light intensity the highest rates of PP were noted for plants grown under LED. The P/2e ratio, which characterizes the degree of PP coupling to electron transport in the chloroplast electron transport chain, showed a similar pattern. Thus, the narrow-band spectrum of the light source had little influence on leaf mesostructure and electron transport rates. However, this spectrum significantly affected the chloroplast PP activity. The PP patterns at low and normal light intensities were opposite for plants grown under LED and HPSL light sources. We suppose that growing plants under LED array at normal light intensity disturbed the chloroplast coupling system, thus preventing the effective use of light energy for ATP synthesis. At low light intensity, chloroplast PP activity was significantly higher under LED illumination, but plant growth was suppressed because of impaired adaptation to low light intensity.  相似文献   

10.
Summary Whole cell absorption curves of the marine dinoflagellate Glenodinium sp., cultured at irradiances of 250W/cm2 (low light) and 2500W/cm2 (high light), were measured and their difference spectrum determined. Absorption by low light grown cells exceeded that of high light grown cells throughout the visible spectrum by a factor which ranged from 2 to 4. The difference spectrum supported the view that increased pigmentation, resulting from low light conditions, was largely due to an increase in cell content of a peridinin-chlorophyll a-protein (PCP) and an unidentified chlorophyll a component of the chloroplast membrane. Photosynthetic action spectrum measurements indicated that chlorophyll a, peridinin, and very likely chlorophyll c, were effective light-harvesting pigments for photosynthesis in both high and low light grown cultures of Glenodinium sp. Comparison of action spectra and absorption spectra suggested that low light grown cells selectively increased cellular absorption in the 480 nm to 560 nm region, and effectively utilized this spectral region for the promotion of oxygen evolution.Abbreviations PCP peridinin-chlorophyll a-protein - SIO (F.T. Haxo) Scripps Institution of Oceanography collection  相似文献   

11.
Submerged aquatic macrophytes grow across a wide, often coupled, range of light and inorganic carbon availabilities, and each single factor influences photosynthesis and acclimation. Here we examine the interactive effects of light and inorganic carbon on the growth of Elodea canadensis and Callitriche cophocarpa. The plants were grown in the laboratory at a range of light intensities (0–108 μmol m−2s−1) and four inorganic carbon regimes in a crossed factorial design. Plant growth rates, measured over 3–4 weeks of incubation, increased in response to increasing light intensity and inorganic carbon availability, and significant interactive effects were observed. The light-use efficiency for growth at low light increased 2-fold for Callitriche and 6-fold for Elodea between the lowest and highest inorganic carbon concentrations applied. Also, the growth rate at the highest light intensity increased with inorganic carbon availability, but the relative increase was smaller than at low light. Both species acclimated to the light and carbon regime such that the chlorophyll content declined at low and high light intensities and the initial slopes of the photosynthetic CO2 and HCO3 response curves declined at high levels of CO2. Callitriche responded less markedly than Elodea to changing inorganic carbon availability during growth, and the initial slope of the photosynthetic HCO3 response curve, in particular, was greatly reduced (>90%) in Elodea by high CO2. It is suggested that the coupled responses of aquatic macrophytes to light and inorganic carbon influence their ability to develop dense stands at high light in shallow water and to extend to greater depths in waters rich in inorganic carbon.  相似文献   

12.
13.
We investigated the spectral sensitivity and response to light intensity of Aphidius gifuensis (Hymenoptera: Braconidae), a key natural enemy of the green peach aphid, Myzus persicae (Hemiptera: Aphididae). We used 15 monochromatic lights (emitting various specific wavelengths from 340 to 689 nm) and white light. Monochromatic light of different wavelengths and white light elicited photopositive behaviour from A. gifuensis. The strongest response was stimulated by blue light (492 nm), which induced a movement of 43.5 cm, a response that differed from all other groups. This was followed by green light (568 nm) and UV-light (380 nm). There was no significant response to orange light (601 nm) or red light (649, 668 and 689 nm) from A. gifuensis. The response intensity curve for A. gifuensis to monochromatic light (492 nm) decreased as light intensity increased. At 568 nm, the phototactic response showed an ‘S’ shaped curve. But at 628 nm, the phototactic response rose continuously with increasing intensity. We report here that the visual system of A. gifuensis is composed of three spectrum receptors, attuned to UV, blue and green light. While light intensity is a key factor in determining the photopositive response of A. gifuensis, the effect of intensity varies by wavelength.  相似文献   

14.
Soybean plants grown in controlled environment cabinets under light intensities of 220 w/m2 or 90 w/m2 (400–700 nm) and day to night temperatures of 27.5–22.5 C or 20.0–12.5 C in all combinations, exhibited differences in growth rate, leaf anatomy, chloroplast ultrastructure, and leaf starch, chlorophyll, and chloroplast lipid contents. Leaves grown under the lower light intensity at both temperatures had palisade mesophyll chloroplasts containing well-formed grana. The corresponding leaves developed under the higher light intensity had very rudimentary grana. Chloroplasts from high temperature and high light had grana consisting of two or three appressed thylakoids, while grana from the low temperature were confined to occasional thylakoid overlap. Spongy mesophyll chloroplasts were less sensitive to growth conditions. Transfer experiments showed that the ultrastructure of chloroplasts from mature leaves could be modified by changing the conditions, though the effect was less marked than when the leaf was growing.  相似文献   

15.
Chlorella pyrenoidosa has been cultivated in radiation of wavelengths between 690–975 nm for several months. Absorption spectra and action spectra of photo-synthesis have been determined for far red and “white” light brown cultures, In vivo spectrophotometric analyses and action spectra showed that fur red growth Chlorella adapted to the extreme light conditions by an increase both in absorption and photosynthesis above 700 nm. It is proposed that som of the in vivo normal chlorophyll a forms were converted to a far red absorbing chlorophyll a form, giving the far red exposed suspension an increased photosynthetic activity between 700–740 nm. The analyses of far red grown Chlorella have also shown an increased photosynthesis in the blue part of the spectrum, presumably due to a decrease in photosynthetically inactive carotenoid content. By culturing Chlorella in a “white” light gradient between 0.5 × 104 and 3.7 × 104 erg cm?2 s?1, it has been demonstrated that light intensity did not influence pigment ratios between 500–750 nm. In the blue part, however, high light levels caused increased absorption because of increased carotenoid content. Some ecological aspects of this far red effect have also been discussed.  相似文献   

16.
The infrared absorption spectra of 29Chlorella strains were recorded over the range from 1,800 to 700 cm−1. Temperature and light intensity upon algal culture gave no significant effect on the spectrum of late log phase cells. The spectra of cells grown in glucose media were different from those of cells grown autotrophically. It was possible to identify 5 groups of strains by comparison of the relative intensities of absorption bands ascribed to nucleic acid, protein, carbohydrate and others, and cell sizes. These groups corresponded well with the current classification ofChlorella.  相似文献   

17.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

18.
Dunaliella tertiolecta Butcher was grown at two intensities (33, 150μEin · m?2· s?1) of blue light and white light at 0.25, 0.50 and 1.00 M NaCl. Growth rates were used as an indication of the relative osmoregulatory ability of cells in the various treatments. There was no significant effect on growth rate due to various NaCl molarities. No significant difference in growth rate was found between blue- and white-light cultures at the high intensity, the average growth constant being 2.07 divisions/day. However, at the low intensity illumination, blue light produced a significant increase in growth rate; 1.42 vs. 0.93 divisions/day for blue light and white light grown cells respectively. The average glycerol content of exponentially dividing cells grown at 0.25, 0.50 and 1.00 M NaCl was 0.12, 0.41 and 1.12 mg/108 cells, respectively, as measured by gas chromatography. The intracellular glycerol content was significantly reduced by blue light at both light intensities and at each NaCl molarity. However, high light intensity reduced cellular glycerol content more than the reduction effected by blue light. Glycerol accumulated in the medium throughout culture growth. Intracellular glycerol content also increased with cellular aging reaching 2.72 mg/108 cells in stationary phase, low intensity 1.00 M NaCl cultures. A negative correlation between glycerol content and growth rate was found. Total inhibition of glycerol production could not be obtained by treatment with blue light. However, this negative correlation possibly indicates that D. tertiolecta expends energy producing an excess amount of glycerol over that required for osmoregulation, leading to a reduction in the growth rate for the organism.  相似文献   

19.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

20.
Rhodobacter sphaeroides is a purple non-sulfur photosynthetic bacteria that participates in the anoxic cycling of carbon both as the primary producer and as the light-stimulated consumers of the reduced organic compounds. In this study, six different organic acids, i.e. acetate, lactate, oxaloacetate, malate, succinate, and citrate, were selected and used to analyze the relationships between the organic acid source and the cell growth. The C4 compound exhibited an enhanced cell growth compared to the other organic acids, and the growth rate of R. sphaeroides that was grown with 0.03 M succinic acid was significantly 3.2-fold faster than the C6 compound of 0.03 M citrate. Additionally, the cell growth of R. sphaeroides was enhanced with increasing light intensity, and the growth rate and the dry cell weight of R. sphaeroides that were grown under the light conditions of 15 W/m2 were 2.0- and 1.2-fold higher than R. sphaeroides at 3 W/m2. Therefore, the high light intensity probably affected the growth of R. sphaeroides. Moreover, the blue-colored light emitting diode (LED) exhibited a highest growth rate and cell concentration of R. sphaeroides among the various types of LEDs, and the enhanced cell growth phenomenon under the blue LED conditions was dramatically stimulated at low concentrations of succinic acid, which was compensatory for succinic acid. Therefore, a high light intensity and a blue LED as the light source were necessary for the enhanced cell growth for the C4 organic acid, i.e. succinic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号