首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using modulated excitation, we have measured the forward and reverse rates of the allosteric transition between relaxed (R) and tense (T) quaternary structures for triply ligated hemoglobin (Hb), cross-linked between the alpha chains at Lys 99. Oxygen, carbon monoxide, and water were used as ligands and were studied in phosphate and low Cl- bis-Tris buffers at neutral pH. Since the cross-link prohibits disproportionation, triply ligated aquomet Hb species with ferrous beta chains were specifically isolated by isoelectric focusing. Modulated excitation provides rate pairs and therefore gives equilibrium constants between quaternary structures. To coordinate with that information, oxygen binding curves of fully ferrous and tri-aquomet Hb were also measured. L3, the equilibrium constant between three liganded R and T structures, is determined by modulated excitation to be of order unity for O2 or CO (1.1 to 1.5 for 3O2 and 0.7 for 3CO bound), while with three aquomet subunits it is much greater (> or = 23). R-->T conversion rates are similar to those found for HbA, with weak sensitivity to changes in L3. The L3 values from HbXL O2 were used to obtain a unique allosteric decomposition of the ferrous O2 binding curve in terms of KT, KR, and L3. From these values and the O2 binding curve of tri-aquomet HbXL, L3 was calculated to be 2.7 for the tri-aquomet derivative. Consistency in L3 values between equilibrium and modulated excitation data for tri-aquomet-HbXL can be achieved if the equilibrium constant for O2 binding to the alpha chains is six times lower than that for binding to the beta chains in the R state, while the cooperative properties remain homogeneous. The results are in quantitative agreement with other studies, and suggest that the principal effect of the cross-link is to decrease the R state and T state affinity of the alpha subunits with almost no change in the affinity of the beta subunits, leaving the allosteric parameters L and c unchanged.  相似文献   

2.
Heme pocket dynamics of human carbonmonoxy hemoglobin (HbCO) is studied by Fourier transform infrared spectroscopy. The CO stretching band at various temperatures in the interval 300-10 K is analyzed in terms of three taxonomic A substates; however, in HbCO the band attributed to the A(1) taxonomic substate accounts for approximately 90% of the total intensity in the pH range 8.8-4.5. Two different regimes as a function of temperature are observed: below 160 K, the peak frequency and the bandwidth of the A(1) band have constant values whereas, above this temperature, a linear temperature dependence is observed, suggesting the occurrence of transitions between statistical substates within the A(1) taxonomic substate in this protein. The relationship between the heme pocket dynamics (as monitored by the thermal behavior of the CO stretching band), the overall dynamic properties of the protein matrix (as monitored by the thermal behavior of Amide II and Amide I' bands) and the glass transition of the solvent (as monitored by the thermal behavior of the bending band of water) is also investigated. From this analysis, we derive the picture of a very soft heme pocket of hemoglobin characterized by rather large anharmonic terms and strongly coupled to the dynamic properties of the solvent.  相似文献   

3.
The functional properties of squirrel-fish hemoglobin have been measured by studying ligand binding equilibria and kinetics. The results show that squirrel-fish hemoglobin has a Root effect with a corresponding stabilization of the low affinity state. The properties of this state are pH dependent even in the absence of cooperativity. The effect of ATP shifts the overall ligant affinity towards the low affinity state and is characteristic of the allosteric effect caused by organic phosphates. Under pH and ATP conditions favoring the low affinity conformational state, a 10-fold difference in the binding kinetics of carbon monoxide to the alpha and beta subunits is observed.  相似文献   

4.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

5.
The kinetics for electron transfer have been measured for samples of hemoglobin valency hybrids with initially one type of subunit, alpha or beta, in the oxidized state. Incubation of these samples under anaerobic conditions tends to randomize the type of subunit that is oxidized. With a time coefficient of a few hours at pH 7, 25 degrees C, the Hb solution (0.1 mm heme) approaches a form with about 60% of beta chains reduced, indicating a faster transfer rate in the direction alpha to beta. There was no observable electron transfer for samples saturated with oxygen. The electron transfer occurs predominantly between deoxy and aquo-met subunits, both high spin species. Furthermore, electron transfer does not depend on the quaternary state of hemoglobin. Incubation of oxidized cross-linked tetramer Hb A with deoxy Hb S also displayed electron transfer, implying a mechanism via inter-tetramer collisions. A dependence on the overall Hb concentration confirms this mechanism, although a small contribution of transfer between subunits of the same tetramer cannot be ruled out. These results suggest that in vivo collisions between the Hb tetramers will be involved in the relative distribution of the methemoglobin between subunits in association with the reductase system present in the erythrocyte.  相似文献   

6.
C F Bucci  E Bucci 《Biochemistry》1975,14(20):4451-4458
The beta subunits of hemoglobin upon alkylation of the cysteinyl residues with iodoacetamide showed a sedimentation velocity with an S20w, near 1.8 as for monomeric subunits. They reacted with alpha chains to give a tetrameric hemoglobin with a sedimentation constant near 4.4. Their CD spectrum was indistinguishable from that of untreated beta chains below 270 nm, otherwise they showed some deviation that became pronounced in the Soret region, where the optical activity of the alkylated subunits was definitely lower than that of the native subunits. Upon removal of the heme the apo-beta subunits showed a decreased optical activity in the far-uv region of the spectrum indicating a substantial loss of helical content. Their sedimentation behavior was consistent with the presence of large aggregates, which dissociates into monomers upon reconstitution with cyanoheme. The apo-beta subunits could be renatured from 6 M guanidine hydrochloride. They showed a stoichiometric reaction with heme in the molar ratio 1:1. Upon reconstitution with the heme their optical activity became similar to that of the native beta chains in the far-uv region of the spectrum, but remained lower in the near-uv and Soret regions. After acylation of the lysyl residues with citraconic anhydride the apo-beta subunits were digested with trypsin and the arginyl-COOH peptides beta(1-30), beta(31-40), beta(41-104), and beta(105-146) were separated by gel chromatography. With the exception of the peptide beta/105-146), which was insoluble at neutral pH, the sedimentation behavior of the other peptides showed the presence of small polymers. The sedimentation behavior of the peptide beta(31-40) was not tested. The percentage of alpha helix, beta conformation, and of random coil (or unordered structure) of the various proteins and peptides was measured fitting their CD spectra in the far-uv region with the parameter published by Y.H. Chen et al. ((1974), Biochemistry 13, 3350) and by N. Greenfield and G.D. Fasman ((1969), Biochemistry 8, 4108). In this way the helical content of the native and reconstituted alkylated beta subunits appeared to be near 76%, a value very near to that present in the same subunits in the hemoglobin crystal. The helical content of the apo-beta subunits in 0.04 M borate buffer at pH 9.6 decreased to a value near 45%. The helical content of the isolated peptides in electrolyte solutions was in any case near 10% indicating an almost complete loss of the structure that they have in the hemoglobin crystal. Cyanoheme reacted with the peptide beta(41-104), however, the reaction was not stoichiometric indicating a low affinity of the heme for the peptide. With the exception of the peptide beta(31-104), all of the other peptides recovered some of their helical structure when dissolved in 50% methanol. Notably also the apo-beta subunits did so suggesting that the loss of structure upon the removal of the heme could be in part due to the exposure of the heme pocket to water.  相似文献   

7.
Results of investigations of E. coli DNA glycosylases using pre-steady-state kinetics are considered. Special attention is given to the connection of conformational changes in the interacting biomolecules with kinetic mechanisms of the enzymatic processes.  相似文献   

8.
9.
J S Philo  U Dreyer    J W Lary 《Biophysical journal》1996,70(4):1949-1965
The kinetics of CO binding and changes in quaternary structure for symmetric valency hybrids of human hemoglobin have been extensively studied by laser photolysis techniques. Both alpha+beta and alpha beta+ hybrids were studied with five different ferric ligands, over a broad range of CO concentrations and photolysis levels. After full CO photolysis, the hybrid tetramers switch extensively and rapidly (< 200 microseconds) to the T quaternary structure. Both R --> T and T --> R transition rates for valency hybrid tetramers with 0 and 1 bound CO have been obtained, as well as the CO association rates for alpha and beta subunits in the R and T states. The results reveal submillisecond R reversible T interconversion, and, for the first time, the changes in quaternary rates and equilibria due to binding a single CO per tetramer have been resolved. The data also show significant alpha-beta differences in quaternary dynamics and equilibria. The allosteric constants do not vary with the spin states of the ferric subunits as predicted by the Perutz stereochemical model. For the alpha beta+CN hybrid the kinetics are heterogeneous and imply partial conversion to a T-like state with very low (seconds) R reversible T interconversion.  相似文献   

10.
11.
HbA1c is the most prevalent of the minor human hemoglobins. It is formed by the nonenzymatic addition of glucose to the alpha-amino group of the beta chain by an initial condensation reaction and a subsequent intermolecular Amadori rearrangement. We have developed a method of analysis which utilizes high performance liquid chromatography to follow the formation of HbA1c and greatly simplifies the determination of the kinetic parameters associated with this reaction. This has allowed us to study the effects of several Hb ligands, including the hydrogen ion, on the kinetics of this glycosylation reaction. Both the initial condensation reaction and the subsequent rearrangement are shown to exhibit acid catalysis, but the rate of the condensation step is limited by the extent of protonation of the alpha-amino group. The variation in kinetic parameters as a function of hydrogen ion concentration has allowed us to determine the probable reaction mechanism of HbA1c formation by comparison to previously reported model systems of Schiff base formation and Amadori rearrangement. The formation of pre-HbA1c from deoxy-Hb shows an increased forward rate when compared to oxy-Hb. The presence of physiologic concentrations of CO2 causes a proportional decrease in both k1 and k-1. 2,3-Diphosphoglycerate causes a significant increase in the keq of the formation reaction. The effects of CO and the substitution of L-glucose for D-glucose are not significant.  相似文献   

12.
J M Salhany    S Ogawa  R G Shulman 《Biochemistry》1975,14(10):2180-2190
The quaternary structures of fully liganded adult hemoglobin and hemoglobin Kansas (alpha2beta2 102 Asn-thr) bound by carbon monoxide or nitric oxide were spectroscopically characterized using high-resolution nuclear magnetic resonance (NMR) and ultraviolet circular dichroism (CD). The spectral markers used for the quarternary transition were the line in the NMR spectrum in H2O-14 ppm downfield from 2,2-dimethyl-2-silapentane-5-sulfonate and the negative peak at 285 nm in the ultraviolet CD spectrum. In the nitrosyl derivatives, these two structural markers were compared with the electron paramagnetic resonance (EPR) spectrum at room temperature for the purpose of correlating structural changes in the protein with changes at the heme...  相似文献   

13.
We describe a technique for monitoring the kinetics of sickle cell hemoglobin gelation by observing the change in the amplitude and linewidth of the water proton magnetic resonance. The resulting kinetic progress curves are very similar to those obtained by optical birefringence and turbidity methods. The curves consist of a delay, followed by a rapidly accelerating signal change which terminates quickly. From a study of the temperature dependence of the delay time, it is shown that all three techniques see the onset of gelation simultaneously. The origin of the change in physical properties upon gelation is briefly discussed in relation to the component steps of the reaction.  相似文献   

14.
With the purpose of establishing whether, as a general rule, regions of a protein chain that are helical in the native structure maintain, at least partially, the same helical structure when isolated in solution, we have prepared the 1-23 fragment of human hemoglobin alpha-chain, and studied its conformational properties in aqueous solution by CD and 1H-NMR. From the analysis of CD and NMR spectral changes with temperature, salt and addition of trifluoroethanol (TFE) it can be concluded that the 1-23 peptide forms a measurable population (18% at 22 degrees C (pH 5.6) TFE/H2O, 30:70 (v/v)) of an alpha-helix structure that spans the same residues that are helical in the native protein (namely, 6 to 17). These results, taken together with similar ones obtained previously in the 1-19, 21-42 and 50-61 RNAase fragments, support the idea that no helices other than the native ones are actually formed in solution by protein fragments. This implies that the final helical structure of a protein is present from the very beginning of the folding process, and also that such elements of secondary structure can act as primary nucleation centers.  相似文献   

15.
16.
17.
A flash photolysis method is described for analyzing ligand binding to the new and growing group of hemoglobins which are hexacoordinate in the unligated, ferrous state. Simple analysis of a two exponential fit to time courses for CO rebinding at varying CO concentrations yields rate constants for formation and dissociation of the hexacoordinate complex, and the bimolecular rate constant for CO binding. This method was tested with a nonsymbiotic plant hemoglobin from rice for which these values had not previously been determined. For this protein, dissociation and rebinding of the hexacoordinating amino acid side chain, His(73), is rapid and similar to the rate of CO binding at high CO concentrations. These results indicate that hexacoordination must be taken into account when evaluating the affinity of hexacoordinate hemoglobins for ligands.  相似文献   

18.
We have measured the forward and reverse rates of the allosteric transition between R (relaxed) and T (tense) quaternary structures for oxyhemoglobin A from which a single oxygen molecule was removed in pH 7, phosphate buffer, using the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield. 1976. Proc. Natl. Acad. Sci. USA. 73:4497-4501 and Ferrone, F.A., A.J. Martino, and S. Basak. 1985. Biophys. J. 48:269-282). Despite the low quantum yield, which necessitated large light levels and an associated temperature rise, the data was of superior quality to the equivalent experiment with CO as a ligand, permitting comparison between the allosteric behavior of hemoglobin with different ligands. Qualitatively, the T structure is favored more strongly in triligated oxyhemoglobin than triligated carboxyhemoglobin. The rates for the allosteric transition with oxygen bound were essentially temperature independent, whereas for CO both the R----T and T----R rates increased with temperature, having an activation energy of 2.2 and 2.8 kcal, respectively. The R----T rate was higher for O2 than for CO being 3 x 10(3) s-1 vs. 1.6 x 10(3) s-1 for HbCO at 25 degrees C. The T----R rate for HbO2 was only 2 x 10(3) s-1, vs 4.2 x 10(3) s-1 for HbCO, giving an equilibrium constant between the structures greater than unity (L3 = 1.5). The data suggest that there may be some allosteric inequality between the subunits, but do not require (or rule out) ligand binding heterogeneity. The ligand-dependent differences are compatible with stereochemical studies of HbCO and HbO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号