首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.  相似文献   

2.
Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.  相似文献   

3.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

4.
The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.  相似文献   

5.
Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24?h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.  相似文献   

6.
Lipase-catalyzed transesterification of soybean oil and methanol for biodiesel production in tert-amyl alcohol was investigated. The effects of different organic medium, molar ratio of substrate, reaction temperature, agitation speed, lipase dosage and water content on the total conversion were systematically analyzed. Under the optimal conditions identified (6 mL tert-amyl alcohol, three molar ratio of methanol to oil, 2% Novozym 435 lipase based on the soybean oil weight, temperature 40°C, 2% water content based on soybean oil weight, 150 rpm and 15 h), the highest biodiesel conversion yield of 97% was obtained. With tert-amyl alcohol as the reaction medium, the negative effects caused by excessive molar ratio of methanol to oil and the by-product glycerol could be reduced. Furthermore, there was no evident loss in the lipase activity even after being repeatedly used for more than 150 runs.  相似文献   

7.
Biodiesel has been greatly interested as an alternative fuel and is produced by a transesterification reaction of oil with alcohol. Recently, microbial lipases have been used for biodiesel production. Among the microbial lipase, immobilized Candida antartica lipase B (CALB) is the most widely used. However, CALB is unstable and shows low catalytic efficiency in the reaction media because the reaction media contains a high concentration of methanol and the lipase is also inhibited by the by-product glycerol. In this study, to overcome these limitations, we developed an amphiphilic matrix to immobilize CALB. The immobilized lipase in an amphiphilic matrix with 80% ethyltrimethoxysilane (ETMS) in tetramethoxysilane (TMOS) and pretreated with oil showed the highest specific activity and biodiesel conversion ratio; about 90% biodiesel conversion in 24 h at an initial molar ratio of 1: 1 (oil: methanol) with stepwise methanol feeding in order to adjust the net molar ratio to be 1: 3.  相似文献   

8.
In the conventional transesterification of fats/vegetable oils for biodiesel production, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. The objective of this study was, therefore, to investigate the effect of water on the yield of methyl esters in transesterification of triglycerides and methyl esterification of fatty acids as treated by catalyst-free supercritical methanol. The presence of water did not have a significant effect on the yield, as complete conversions were always achieved regardless of the content of water. In fact, the present of water at a certain amount could enhance the methyl esters formation. For the vegetable oil containing water, three types of reaction took place; transesterification and hydrolysis of triglycerides and methyl esterification of fatty acids proceeded simultaneously during the treatment to produce a high yield. These results were compared with those of methyl esters prepared by acid- and alkaline-catalyzed methods. The finding demonstrated that, by a supercritical methanol approach, crude vegetable oil as well as its wastes could be readily used for biodiesel fuel production in a simple preparation.  相似文献   

9.
Biodiesel production—current state of the art and challenges   总被引:3,自引:0,他引:3  
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. JIMB 2008: BioEnergy—special issue.  相似文献   

10.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

11.
Biodiesel, chemically defined as monoalkyl esters of long chain fatty acids, are derived from renewable feed stocks like vegetable oils and animal fats. It is produced by both batch and continuous transesterification processes in which, oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The conventional method of producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to as alcoholysis, a form of transesterification reaction or through an interesterification reaction. In order to increase the cost effectiveness of the process, the enzymes are immobilized using a suitable matrix. The use of immobilized lipases and whole cells may lower the overall cost, while presenting less downstream processing problems. Main focus of this paper is to discuss the important parameters that affect the biodiesel yield, various immobilization techniques employed, mechanisms and kinetics of transesterification reaction and the recent advances in continuous transesterification processes.  相似文献   

12.
Transesterification is a principal chemical reaction that occurs in biodiesel production. We developed a novel biocatalytic membrane microreactor (BMM) for continuous transesterification by utilizing an asymmetric membrane as an enzyme-carrier for immobilization. The BMM was developed by pressure driven filtration of lipase from Pseudomonas fluorescens, which is suitable for highly efficient biocatalytic transesterification. Lipase solution was allowed to permeate through an asymmetric membrane with NMWL 300 kDa composed of polyethersulfone. The performances of BMM were studied in biodiesel synthesis via transesterification of triolein with methanol. Transesterification was carried out by passing a solution of triolein and methanol through the asymmetric membrane. The degree of triolein conversion using this microreactor was ca. 80% with a reaction time of 19 min. The BMM system displayed good stability, with no activity decay over a period of 12 day with continuous operation. Results from triolein transesterification clearly demonstrate the potential of an asymmetric membrane as an enzyme carrier material. Enzyme activity (mmol/h·glipase) was approximately 3 fold higher than that of native free lipase.  相似文献   

13.
Abstract

The world's energy supply is mainly composed of fossil fuels, which are a non-renewable source of energy that is rapidly running out. To overcome this concern, industry has been focusing on the production of biofuels such as biodiesel. A range of approaches has been considered to transform oils into applicable biodiesel: dilutions, microemulsifications, pyrolysis and transesterification. The latter method consists of the conversion of triglycerides to a mixture of alkyl esters and glycerol, in the presence of an acyl acceptor and a catalyst. Due to high selectivity when using enzymes as catalysts, and mild operating conditions, biocatalytic transesterification has proven to be an efficient method. Cutinase, from the superfamily α/β hydrolases, is an enzyme with lipolytic activity that effectively catalyses transesterification reactions. This article highlights the use of cutinase microencapsulated in bis(2ethylhexyl) sodium sulfosuccinate (AOT)-reversed micelles to perform the biocatalytic transesterification of triglycerides, with low chain-length alcohols (e.g. methanol), in organic media to produce biodiesel.  相似文献   

14.
An overview of enzymatic production of biodiesel   总被引:13,自引:0,他引:13  
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process.  相似文献   

15.
This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel.  相似文献   

16.
The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme–substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.  相似文献   

17.
Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production.  相似文献   

18.
Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.  相似文献   

19.
Pumice, a natural porous silica material, exchanged with potassium is an efficient heterogeneous particulate catalytic material for triglycerides and free fatty acids transesterification reaction from sunflower oil and waste frying oil at low temperature. In this work, a packed-bed catalytic configuration reactor using this catalytic material was developed for biodiesel fuel production from sunflower oil and frying oil feedstock. Reactor operation variables as methanol/oil molar ratio, catalyst amount, reaction time, and reaction temperature were studied. Results were compared with those obtained from the same transesterification reaction proceeding in a slurry batch reactor. The packed-bed catalytic reactor configuration can be useful in order to minimize catalyst mechanical damage occurring in the slurry reactor due to continuous stirring. The possibility of using a packed-bed reactor shows some advantages because the catalyst stays confined in the reactor bed and the reaction products can be easily separated, besides the mechanical stability of the catalyst particles is achieved.  相似文献   

20.
Waste cooking oil (WCO) has attracted attention as a non-edible feedstock for biodiesel. Although an alkali catalyst has several advantages over an acid catalyst in biodiesel production, biodiesel conversion from WCO is only 5.2% when using an alkali catalyst (NaOH), owing to its high free fatty acid (FFA) content of 4.2%. In this study, a novel two-step process in a single reactor, comprised of re-esterification of the FFAs with crude glycerol, using a Tin (II) chloride (SnCl2) catalyst, and subsequent transesterification with methanol, using an alkali catalyst, was adopted, and each step was optimized. This study revealed that the FFA content after re-esterification should be approximately 1.5%, not only to save glycerol and the catalyst involved in the re-esterification, but also to achieve high biodiesel conversion during the transesterification. An alkaline catalyst was successfully used to produce biodiesel in the second step, and a 92.8% conversion to biodiesel was achieved under the optimized conditions (0.6% catalyst relative to WCO, 0.2mL-methanol/WCO, 70ºC, 3 h). Overall, this novel two-step process achieved highly enhanced biodiesel conversion (4.0% to 92.8%) with significantly reduced reaction time (12 h to 4 h) and methanol requirements (15 mL/g-WCO to 0.2 mL/g-WCO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号