首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
β-Amylase of sweet potato (Ipomoea batatas L.), which constitutes about 5% of the total soluble protein of the tuberous root, is absent or is present in only small amounts in organs other than the tuberous roots of the normal, field-grown plants. However, when leaf-petiole cuttings from such plants were supplied with a solution that contained sucrose, the accumulation of β-amylase was induced in both leaf and petiole portions of the explants. The sucrose-induced accumulation of β-amylase in leaf-petiole cuttings occurred concomitant with the accumulation of starch and of sporamin, the most abundant storage protein of the tuberous root. The accumulation of β-amylase, of sporamin and of starch in the petioles showed similar dependence on the concentration of sucrose, and a 6% solution of sucrose gave the highest levels of induction when assayed after 7 days of treatment. The induction of mRNAs for β-amylase and sporamin in the petiole could be detected after 6 hours of treatment with sucrose, and the accumulation of β-amylase and sporamin polypeptides, as well as that of starch, continued for a further 3 weeks. In addition to sucrose, glucose or fructose, but not mannitol or sorbitol, also induced the accumulation of β-amylase and sporamin, suggesting that metabolic effects of sucrose are important in the mechanism of this induction. Treatment of leaf-petiole cuttings with water under continuous light, but not in darkness, also caused the accumulation of small amounts of these components in the petioles, probably as a result of the endogenous supply of sucrose by photosynthesis. These results suggest that the expression of the gene for β-amylase is under metabolic control which is coupled with the expression of sink function of cells in the sweet potato.  相似文献   

2.
Sporamin and β-amylase are two major proteins of tuberous storage root of sweet potato (Ipomoea batatas) and their accumulation can be induced concomitantly with the accumulation of starch in leaves and petioles by sucrose (K Nakamura, M Ohto, N Yoshida, K Nakamura [1991] Plant Physiol 96: 902-909). Although mechanical wounding of leaves of sweet potato only occasionally induced the expression of sporamin and β-amylase genes, their expression could be reproducibly induced in leaf-petiole cuttings when these explants were dipped in a solution of polygalacturonic acid or chitosan at their cut edges. Polygalacturonic acid seemed to induce expression of the same genes coding for sporamin and β-amylase that are induced by sucrose. Because polygalacturonic acid and chitosan are known to mediate the induction of wound-inducible defense reactions, these results raise an interesting possibility that β-amylase, in addition to sporamin, may have some role in the defense reaction. Expression of sporamin and β-amylase genes could also be induced by abscisic acid, and this induction by abscisic acid, as well as induction by polygalacturonic acid or sucrose, was repressed by gibberellic acid. By contrast, methyl jasmonate did not cause the significant induction of either sporamin or β-amylase mRNAs. Induction of expression of sporamin and β-amylase genes by polygalacturonic acid or sucrose was inhibited by cycloheximide, suggesting that de novo synthesis of proteins is required for both of the induction processes.  相似文献   

3.
Two major proteins of tuberous roots of sweet potato, sporaminand rß-amylase, were detected in storage parenchymacells, which contain a large amount of starch. In both the leavesand petioles of sweet potato, the sucrose-induced accumulationof mRNAs for sporamin and rß-amylase, and of starchoccurred in a wide variety of cells, first in cells within andaround the vascular tissue and then in various cells distalto them, with the exception of epidermal cells. In the mesophyllcells of leaves treated with sucrose, the accumulation of largenumbers of well-developed starch granules occurred in the preexistingchloroplasts. These results, together with the previous observationthat the sucrose-induced accumulation of sporamin, of rß-amylaseand of starch occurs with similar dependency on the concentrationof sucrose, suggest that an excess supply of sugars to varioustypes of cell triggers a cellular transition that induces thesimultaneous accumulation of these reserve materials that arenormally present in tuberous roots. Accumulation of mRNAs forsporamin and rß-amylase, but not the accumulationof starch, in leaves and petioles can be also induced when leaf-petiolecuttings are supplied with low concentrations of polygalacturonicacid (PGA) at their cut edges. The spatial patterns of accumulationof mRNAs for sporamin and rß-amylase in leaves andpetioles after treatment with PGA were found to be similar tothose observed upon treatment with sucrose. These results suggestthat most of the cells in leaves and petioles have the capacityto respond to both a carbohydrate metabolic signal and a PGA-derivedsignal that is transmitted by diffusion from the vascular system. 4Present address: Department of Molecular Biology, NationalInsustitute of Agrobiological Resources, Tsukuba City, Ibaraki,305 Japan.  相似文献   

4.
5.
6.
7.
Summary Sporamin accounts for more than 80% of the total soluble proteins of tuberous roots of sweet potato, but very little, if any, in other tissues of the same plant. In vitro translation of RNA fractions from the tuberous roots in wheat germ extract and subsequent immunoprecipitation with the antibody to sporamin indicated that this protein is synthesized by membrane-bound polysomes as a precursor 4 000 daltons larger than the mature protein. A cDNA expression library was constructed from the total poly(A)+ RNA from the tuberous roots by a vector-primer method, and an essentially full-length cDNA clone for the sporamin mRNA was selected by direct immunological screening of the colonies. Northern blot analysis showed that sporamin mRNA is approximately 950 nucleotides in length and is specifically present in tuberous roots and very little, if any, in leaves, petioles and non-tuberous roots. Nucleotide sequence of the cDNA predicts a 37 amino acid extension in the precursor at the amino-terminus of the mature protein.  相似文献   

8.
Treatment of sweet potato plants cultured in vitro with a vaporof methyl jasmonate (MeJA) induced an accumulation in leavesof a large amount of protein with an apparent molecular massof 18 kDa. This protein, designated ipomoelin, was purified,and the amino acid sequences of proteolytic fragments were determined.Screening a cDNA library of MeJA-treated leaves by oligonucleotideprobes designed from the peptide sequences identified a clonethat could code for a polypeptide with 154 amino acids. Thededuced amino acid sequence of ipomoelin showed an overall aminoacid identity of 25% with the salt-inducible SalT protein ofrice. In addition, the C-terminal 70 amino acid sequence ofipomoelin showed about 50% identity with the C-terminal aminoacid sequences of seed lectins from Moraceae. The gene for ipomoelinwas present in a few copies in the genome of sweet potato. ThemRNA for ipomoelin was detected in leaves and petioles, butnot in stems and tuberous roots, of sweet potato plants grownin the field. Mechanical wounding of leaves induced ipomoelinmRNA both locally and systemically, while treatment of leaveswith ABA, salt, or a high level of sucrose did not induce ipomoelinmRNA. By contrast, ABA-inducible mRNA for sporamin was not inducedby MeJA. These results suggest that ipomoelin is involved indefensive reactions of leaves in response to wounding and thatJA-mediated wound-induction of ipomoelin occurs independentlyof ABA. (Received January 6, 1997; Accepted March 13, 1997)  相似文献   

9.
10.
Various targeting motifs have been identified for plant proteins delivered to the vacuole. For barley (Hordeum vulgare) lectin, a typical Gramineae lectin and defense-related protein, the vacuolar information is contained in a carboxyl-terminal propeptide. In contrast, the vacuolar targeting information of sporamin, a storage protein from the tuberous roots of the sweet potato (Ipomoea batatas), is encoded in an amino-terminal propeptide. Both proteins were expressed simultaneously in transgenic tobacco plants to enable analysis of their posttranslational processing and subcellular localization by pulse-chase labeling and electron-microscopic immunocytochemical methods. The pulse-chase experiments demonstrated that processing and delivery to the vacuole are not impaired by the simultaneous expression of barley lectin and sporamin. Both proteins were targeted quantitatively to the vacuole, indicating that the carboxyl-terminal and amino-terminal propeptides are equally recognized by the vacuolar protein-sorting machinery. Double-labeling experiments showed that barley lectin and sporamin accumulate in the same vacuole of transgenic tobacco (Nicotiana tabacum) leaf and root cells.  相似文献   

11.
We isolated a cDNA encoding a DNA-binding protein, SPF1, of sweet potato that binds to the SP8a (ACTGTGTA) and SP8b (TACTATT) sequences present in the 5 upstream regions of three different genes coding for sporamin and -amylase of tuberous roots. SPF1 comprises 549 amino acids and is enriched in both basic and acidic residues. The amino acid sequence of SPF1 shows no significant homology to any known protein sequences, suggesting that it may represent a new class of DNA-binding protein. Binding studies with 35S-labeled SPF1, synthesized in vitro, and synthetic DNA fragments indicated that, although SPF1 binds to both the SP8a and SP8b sequences, it binds much more strongly to SP8a than to SP8b. SPF1 bound to the SP8a sequence as a monomer. The DNA-binding domain of SPF1 was localized within the C-terminal half of this protein, and a 162-amino acid fragment of SPF1 (Met310-Arg472) showed DNA-binding activity with no change in target sequence specificity. This fragment contains a region enriched in basic amino acids adjacent to a highly acidic stretch. A sequence which is highly homologous to a 40-amino acid sequence in the basic region of the DNA-binding domain is duplicated in the N-terminal part of SPF1. The gene coding for SPF1 is present in one or a few copies per haploid genome and the SPF1 mRNA was detected in leaves, stems and tuberous roots of the sweet potato, in addition to petioles. The level of SPF1 mRNA in the petioles decreased when leaf-petiole cuttings were treated with sucrose to induce accumulation of sporamin and -amylase mRNAs.  相似文献   

12.
13.
以陇东地区野生紫花苜蓿无菌苗的下胚轴、子叶、叶片和叶柄为外植体,MS为基本培养基,研究划破种皮以及不同生长调节物质种类与配比对愈伤组织诱导和分化影响的结果表明:划破种皮可提高种子发芽率;在外植体中下胚轴的愈伤组织诱导率最高,达92.2%;最佳愈伤组织诱导培养基为MS+2,4-D2.0mg·L^-1(单位下同)+NAA1.0+2.5%蔗糖+0.6%琼脂,最佳分化诱导培养基为MS+KT0.5+NAA0.3+2.5%蔗糖+0.6%琼脂,成苗培养基为1/2MS+NAA0.1+1%蔗糖+0.6%琼脂。  相似文献   

14.
Transgenic Arabidopsis thaliana plants were constructed by introduction of a fusion of the gene for β-glucuronidase (GUS) to the CHS-A gene, which is one of the two genes for chalcone synthase that are actively expressed in the floral organs of petunia. The expression of the fusion gene CHS-A::GUS was low in transgenic Arabidopsis plantlets, but it was enhanced when plantlets or detached leaves were transferred to a medium that contained 0.3 molar sucrose, glucose, or fructose. No enhancement was observed when plantlets were transferred to a medium that contained 0.3 molar mannitol. Measurements of cellular levels of sugars revealed a tight linkage between the level of expression of the CHS-A::GUS gene and the level of accumulation of exogenously supplied sugars, in particular sucrose. The parallelism between the organ-specific accumulation of sugar and the organ-specific expression of the CHS-A::GUS gene was also observed in petunia and A. thaliana plants grown under normal conditions in soil. The consensus sequences for sugar responses, such as boxes II and III in members of the family of sporamin genes from the sweet potato, were found in the promoter region of the CHS-A gene that was used for fusion to the GUS gene. It is suggested that the expression of the CHS-A gene is regulated by sugars, as is the expression of other sugar-responsive genes, such as the genes for sporamin. A putative common mechanism for the control of expression of “sugar-related” genes, including the CHS-A gene, is discussed.  相似文献   

15.
16.
Sporamin, the tuberous root storage protein of the sweet potato, which is localized in vacuoles, is synthesized as a prepro-precursor with an N-terminal sequence of amino acids that includes a signal peptide and an additional pro-segment of 16 amino acids. A full-length cDNA for sporamin was placed downstream of the 35 S promoter of cauliflower mosaic virus and introduced into tobacco and sunflower genomes by Ti plasmid-mediated transformation. A polypeptide of nearly the same size as mature sporamin from the sweet potato was detected in transformed calli of tobacco and sunflower, as well as in the leaves, stems, and roots of regenerated, transgenic tobacco plants. Amino acid sequence analysis of the nearly mature-sized form of sporamin from the transformed tobacco cells revealed that it is actually longer by three amino acids at its N terminus than authentic sporamin purified from the sweet potato. By pulse labeling of suspension-cultured tobacco cells with [35S]methionine, the pro-form of the precursor to sporamin, but not the prepro-precursor, was detected. The 35S-labeled proform was chased to the nearly mature-sized form via an intermediate form which is slightly larger than the nearly mature-sized form. Analysis by Edman degradation of the intermediate form that was labeled in vivo with [3H]histidine suggested that it is longer by two amino acids at its N terminus than the nearly mature-sized form of sporamin. These results suggest that at least two steps of posttranslational processing of the pro-form occurs sequentially in tobacco cells. The posttranslational processing of the pro-form of the precursor to sporamin was inhibited by monensin, suggesting that this step takes place in the acidic compartment, probably in the vacuole. All of the sporamin polypeptides synthesized in transformed tobacco cells were retained inside the cell and sporamin was localized in the vacuole, as judged from results of subcellular fractionation. These results indicate that sporamin is appropriately targeted to the vacuole in tobacco cells.  相似文献   

17.
18.
19.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号