首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomal delivery systems for water-soluble bioactives were prepared using the pro-liposome and the microfluidization technologies. Iron, an essential micronutrient as ferrous sulfate and ascorbic acid, as an antioxidant for iron were encapsulated in the liposomes. Liposomes prepared by the microfluidization technology using 6% (w/w) concentration of the lipid encapsulated with ferrous sulfate and ascorbic acid had particle size distributions around 150 to 200 nm, whereas liposomes from the pro-liposome technology resulted in particle sizes of about 5 μm. The encapsulation efficiency of ferrous sulfate was 58% for the liposomes prepared by the microfluidization using 6% (w/w) lipid and 7.5% of ferrous sulfate concentrations, and it was 11% for the liposomes from pro-liposome technology using 1.5% (w/v) lipid and 15% of ferrous-sulfate concentration. Both the liposomes exhibited similar levels of oxidative stability, demonstrating the feasibility of microfluidization-based liposomal delivery systems for large-scale food/nutraceutical applications.  相似文献   

2.
The active loading of liposomes with dopamine in response to an ammonium sulfate gradient was studied. This method can be regarded as a mean to more efficiently improve the liposomal dopamine/lipids ratio in comparison to conventional methods of liposome preparation. Trapping efficiency of dopamine into liposomes exhibiting a transmembrane ammonium sulfate gradient was shown to be dependent on liposome lipid composition, lipid concentration and temperature. Dopamine-containing liposomes with α-tocopherol in the lipid bilayer were shown to be stable at least for three weeks. It has been found that intraperitoneal (i.p.) administration of conventionally prepared dopamine-containing liposomes as well as liposomes with increased dopamine/lipid ratio may efficiently suppress the expression of parkinsonian symptoms in C57BL/6 mice with experimental parkinsonian syndrome. On the other hand, only through increasing of liposomal dopamine/lipid ratio the complete compensation of dopamine deficiency in the mice brain was achieved. The obtained data may be considered as biochemical evidence in favor of liposomes' ability to act as a carrier system for the delivery of dopamine into the brain.  相似文献   

3.
Intranasal administration of ovalbumin (OVA) formulated in an archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) system prepared by the addition of CaCl2 to small unilamellar archaeosomes (liposomes made from archaeal polar lipids) containing encapsulated OVA, was recently shown to elicit strong and sustained OVA-specific mucosal and systemic immune responses. In this study, we show that the centrifugation/washing and antigen quantization steps required in the standard protocol for obtaining OVA/AMVAD model vaccine formulations can be eliminated by using simpler protocols such as admixing OVA with preformed empty archaeosomes, or by changing the starting ratio (w/w) of archaeal lipid to antigen at the archaeosome preparation stage, prior to the addition of CaCl2 to convert to the AMVAD structures. Irrespective of the vaccine preparation protocol, the AMVAD particle typically comprised of larger spherical structures that had aggregated like a bunch of grapes, and it contained aqueous compartment(s). The anti-OVA IgA antibody responses in vaginal wash, nasal wash, serum, and bile samples, and the anti-OVA IgG antibody responses in sera, in mice intranasally immunized with the OVA/AMVAD formulations prepared by the simplified or the standard protocols, were comparable.  相似文献   

4.
Possibility of encapsulation of water-soluble proteins into multilayer liposomes of soybean zwitterionic phospholipid mixtures (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) was investigated. The influence of the PC/PE ratio (w/w) on efficiency of incorporation of the Bowman-Birk soybean proteinase inhibitor (BBI) and aprotinin (BPTI) into liposomes was studied. Protein encapsulation did not affect liposome sizes. Confocal laser scanning microscopy demonstrated that proteins were located in the central part of the spherical particle and also between bilayers. The study of biological (antitrypsin and antichymotrypsin) activity demonstrated partial spatial shielding of active sites of proteins entrapped in liposomes. The effect of an ionic detergent on the activity of the encapsulated BBI and BPTI is consistent with this hypothesis and suggests that this shielding is reversible. Stability of liposomes was examined using three various media modeling gastrointestinal fluids (gastric and intestinal juices and fluids). Data obtained indicate that the prepared liposomes seem to be promising formulations for BBI and BPTI delivery.  相似文献   

5.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

6.
We have studied the liposome-mediated delivery of methotrexate-gamma-aspartate to five cell lines. The sensitivity of the cells to encapsulated drug varies widely in accordance with their ability to take up the liposomes. CV1-P cells can be 150-times more sensitive to encapsulated methotrexate-gamma-aspartate than to free drug, while AKR/J SL2 cells are only twice as sensitive to the encapsulated drug. Negatively-charged liposomes are much more efficient for delivery than are neutral liposomes, and cholesterol is an essential component of the liposome membrane for optimal drug delivery. The optimal liposome size for drug delivery is 0.1 micron, although the amount of cell-associated lipid is the same for all liposome sizes. The effect of the encapsulated drug is inhibited by NH4Cl, suggesting an endocytic mechanism for delivery. The potency of the encapsulated drug is not affected by wide variations in the drug: lipid ratio.  相似文献   

7.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

8.
D V Kalvakolanu  A Abraham 《BioTechniques》1991,11(2):218-22, 224-5
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.  相似文献   

9.
Relation of lipid peroxidation to loss of cations trapped in liposomes   总被引:2,自引:0,他引:2  
Lipid peroxidation and alterations in cation loss have been induced in liposomes by ferrous ion, ascorbic acid, reduced and oxidized glutathione, and gamma radiation. Modifications of these effects by tocopherol and 2,6-di-tert-butyl-4-methylphenol (BHT) were studied when these antioxidants were either incorporated in the membrane or were added to already formed liposomes prior to the addition of the chemical agent or to irradiation. Lipid peroxidation, as indicated by the thiobarbituric acid test for malonic dialdehyde, did not correlate with alterations in cation loss. The largest amounts of lipid peroxidation induced by ascorbic acid and glutathione were associated with decreased cation loss. Inhibition of Fe(2+)- and radiation-induced lipid peroxidation by antioxidants did not inhibit the associated increase in cation loss. Tocopherol was a more effective antioxidant than BHT when it was incorporated in the membrane, whereas BHT was more effective when it was added to the liposomes after formation.  相似文献   

10.
目的:制备盐酸米托蒽醌聚乙二醇化(PEG化)脂质体,建立包封率测定方法.方法:采用乙醇注入结合高压均质法制备空白PEG化脂质体;以铵根离子梯度法进行主动载药制备盐酸米托蒽醌PEG化脂质体;采用G-25葡聚糖凝胶色谱分离脂质体和游离药物;使用紫外-可见分光光度法测定脂质体的包封率.结果:空白脂质体平均粒径为88.7nm,载药后粒径为95.3nm;在所建立色谱条件下,脂质体与游离米托蒽醌分离良好;盐酸米托蒽醌在0.5~10μg·ml-1范围内线性关系良好(R 2=0.9997),精密度高;脂质体的平均包封率大于96%.结论:乙醇注入-高压均质法结合铵根离子主动载药法适用于制备盐酸米托蒽醌PEG化脂质体;所建立分析方法简单快捷、准确可靠,可用于盐酸米托蒽醌长循环脂质体包封率的测定.  相似文献   

11.
The activity of tyrosine phenol-layse a chemotherapeutic enzyme with a dissociable pyridoxal phosphate cofactor, was studied after incorporation into multilamellar positively charged liposomes. Tyrosine phenol-lyase activity was assessed in the presence and absence of exogenous pyridoxal phosphate. A maximum of 75% total enzyme activity was associated with liposomes when prepared from a molar lipid ratio of egg lecithin, cholesterol, stearylamine (7 : 2 : 1, w/w). The total tyrosine phenol-lyase activity was comprised of 25% membrane-associated enzyme and 50% encapsulated enzyme. Encapsulation increased the stability of the enzyme under the in vitro conditions of cold storage at 4°C for 3 weeks and under elevated temperatures up to 61°C. Liposomal encapsulation afforded little protection against trypsin and no protection against whole mouse plasma in vitro. Heat-treated plasma (100°C for 1 h) had little effect on the activity of free and encapsulated tyrosine phenol-lyase. These results indicated that whole plasma contained a heat-labile factor(s) which destroyed both the liposomal and free tyrosine phenol-lyase activity. Plasma clearance after intraperitoneal injection of tyrosine phenol-lyase in B6D2F1 female mice was reduced by liposomal encapsulation, particularly when the animals were pre-treated with empty liposomes; however, only a small proportion of free and liposomal tyrosine phenol-lyase was absorbed. The free enzyme rapidly lost holoenzyme activity after absorption but the liposomes maintained holoenzyme activity. Even though liposomes preserved holo-tyrosine phenol-lyase activity, the holoenzyme was not present in sufficient concentration to sustain a reduced plasma tyrosine level.  相似文献   

12.
Liposomes with entrapped doxorubicin exhibit extended blood residence times   总被引:1,自引:0,他引:1  
The blood residence time of liposomes with entrapped doxorubicin is shown to be significantly longer than for identically prepared empty liposomes. Liposomal doxorubicin systems with a drug-to-lipid ratio of 0.2 (w/w) were administered at a dose of 100 mg lipid/kg. Both doxorubicin and liposomal lipid were quantified in order to assess in vivo stability and blood residence times. For empty vesicles composed of phosphatidylcholine (PC)/cholesterol (55:45, mole ratio) and sized through filters of 100 nm pore size, 15-25% of the administered lipid dose was recovered in the blood 24 h after i.v. injection. The percentage of the dose retained in the circulation at 24 h increased 2-3-fold when the liposomes contain entrapped doxorubicin. For 100 nm distearoyl PC/chol liposomal doxorubicin systems, as much as 80% of the injected dose of lipid and drug remain within the blood compartment 24 h after i.v. administration.  相似文献   

13.
采用不同的提取液,对10个小麦品种的非酶功能性种子储藏蛋白进行提取,分别进行梯度凝胶电泳分析。电泳依据提取液的不同,分别采用酸性或碱性系统。对酸性凝胶催化系统,采用Ap-Vc-FeSO4系统代替H2O2-Vc-FeSO4系统,克服了酸性凝胶的不足,提高了凝胶的性质性能并使之容易操作。应用新的催化系统配制的酸性梯度胶,提高了分辨率。并初步尝试以酸性系统分析种子谷蛋白,获得了成功,经过对不同提取液蛋白  相似文献   

14.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

15.
The objective of this investigation was to evaluate the effect of delivery strategies such as cyclodextrin complexation and liposomes on the topical delivery of ketorolac acid (KTRA) and ketorolac tromethamine. Ketorolac acid–hydroxypropyl-β-cyclodextrin solid dispersions (KTRA-CD) were prepared by kneading method. The liposomes containing ketorolac tromethamine (KTRM) and KTRA-CD were prepared. The in vitro permeation of KTRM solution, KTRA solution, KTRA-CD, and liposomes containing KTRM or KTRA-CD through guinea pig skin was evaluated. The anti-inflammatory activity of the topically applied KTRA-CD gel (containing 1% w/w KTRA) was compared to that of orally delivered KTRM solution. The KTRA-CD demonstrated significantly higher transdermal transport of ketorolac as compared to all other systems whereas liposomes significantly reduced the transport of ketorolac. The anti-inflammatory activity of the topically applied KTRA-CD gel was similar to that of the orally administered KTRM. Thus, cyclodextrin complexation enabled effective transdermal delivery of the ketorolac.  相似文献   

16.
The effect of zinc on FeSO4/ascorbic acid-induced lipid peroxidation was measured by the thiobarbituric acid assay in various lipid systems including small unilamellar liposomes prepared from egg phosphatidylcholine (EPC), ionic micelles prepared from arachidonic acid (C20:4), non-ionic monocomponent micelles prepared from EPC-derived, methylated fatty acids, and an eicosatetrene emulsion. With the exception of C20:4 micelles, zinc inhibited lipid peroxidation in each of the above systems in a similar dose-related fashion, with 0.5 mM zinc having maximal effect. Gas-chromatographic fatty acid analysis too indicated a protective effect of zinc against FeCl3-induced lipid peroxidation in soybean PC vesicles, which do not contain C20:4 moieties. These findings, in particular the inhibition of lipid peroxidation in eicosatetrene emulsion, suggest that the presence of uncharged polar head groups, or packing of lipid molecules into ordered self-assemblages (membranes and micelles) have no critical influence on the antioxidant effect of zinc. The results with Fe2+ are compatible with the concept that zinc interferes with the formation of Fe2+-oxygen-enoic complexes. This mechanism, however, cannot account for the inhibition by zinc of the Fe#+-induced lipid peroxidation, suggesting the involvement of other types of zinc effects in these systems.  相似文献   

17.
A chemically defined medium was developed to study liposome-mediated delivery of methotrexate-gamma-aspartate to cells under conditions where dilute suspensions of negatively charged liposomes to not leak extensively. The defined medium induced 14% leakage of methotrexate-gamma-aspartate from egg phosphatidylglycerol/cholesterol (67:33) liposomes diluted to 53 nM lipid. In contrast, commercially available serum replacements induced up to 91% leakage from the same liposomes. The growth inhibitory properties of non-loaded phosphatidylglycerol liposomes were greater in the chemically defined medium that they were in medium supplemented with 10% serum. Egg phosphatidylglycerol, dioleoylphosphatidylglycerol and dilaurylphosphatidylglycerol liposomes inhibited cell growth more than dimyristoylphosphatidylglycerol and dipalmitoylphosphatidylglycerol liposomes. In 10% serum, phosphatidylglycerol liposomes with widely varying phase-transition temperatures were nearly equally effective to deliver drug to CV1-P and L929 cells, despite great differences in liposome stability. Liposome encapsulated methotrexate-gamma-aspartate was more potent when the cells were grown in the defined medium, and the increase in drug delivery was observed from phosphatidylglycerol liposomes of different phase-transition temperatures. The minimum fraction of negatively charged phospholipid required for optimal liposome-mediated drug delivery varied between cell types and among growth media. The growth inhibitory effects of liposome-encapsulated methotrexate-gamma-aspartate was also determined under conditions where the cells were exposed to drug for periods shorter than the entire growth assay. Reduction of the exposure time decreased the potency of both encapsulated and free drug in medium containing 10% serum, and decreased the potency of free drug in the defined medium. However, the potency of encapsulated drug in the defined medium was similar for all exposure lengths between 1 and 48 hours.  相似文献   

18.
In the majority of bacterial and viral infections the generation of cytotoxic T cells is of particular interest because such pathogens are able to escape the host defence mechanisms by surviving intracellularly within the phagocytic cells. To generate a CD8+ T lymphocyte response against exogenous antigens, the prerequisite is their delivery into the cytosol followed by processing and presentation along with class I major histocompatibility complex (MHC-I) molecules. In the present study we describe the method of liposome-based delivery of antigens and other macromolecules into the cytosol of target cells. To develop safe and effective methods for generating CD8+ T lymphocytes, we exploited the fusogenic character of lipids derived from lower organisms, that is baker's yeast (Saccharomyces cerevisiae). The degree of fusion with model membrane systems using yeast lipid liposomes varied from 40-70%, as opposed to 1-8% observed with egg PtdCho liposomes, depending on the assay system used. The fusion of yeast lipid liposomes with macrophages resulted in effective delivery of the entrapped solutes into the cytoplasmic compartment. This was further supported by the inhibition of cellular protein synthesis in J774 A1 cells by ricin A, encapsulated in the yeast lipid liposomes. Interestingly, the model antigen ovalbumin, when entrapped in the yeast lipid liposomes, successfully elicited antigen reactive CD8+ T cell responses. It may be concluded that the liposomes made of lipids derived from S. cerevisiae can spontaneously fuse with macrophages, delivering a significant portion of their contents into the cytoplasmic compartment of the cells.  相似文献   

19.
In this study, medium-chain fatty acid (MCFA) liposomes were prepared by the film ultrasonic dispersion, modified ethanol injection, and reverse-phase evaporate methods. The results indicated that the liposomes prepared by the thin-film ultrasonic dispersion method had a high entrapment efficiency of 82.7% and a good distribution in size diameters. The MCFA liposomes were freeze-dried and the optimal preparation conditions of freeze-drying were as follows: The cryoprotectants were mannitol and sucrose (1:1 w/w), the hydrated medium was distilled water, and the freeze-drying time was 48 hours. Under these conditions, the freeze-dried MCFA liposomes had a perfect appearance, a small particle size, and high encapsulation efficiency. The mean diameters were 251.1 and 265.3?nm, and the encapsulation efficiencies were 80.5 and 79.2% for freshly prepared and reconstituted liposomes, respectively.  相似文献   

20.
Multilamellar liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distribution of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome prepartion. Liver uptake of encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from the liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号