首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The binding of the "activated" receptor-glucocorticoid complexes of cultured rat hepatoma cells to nuclei, chromatin, and DNA has been studied under cell-free conditions. A critical factor in determining the shape of the binding curve is shown to be an inhibitory material which is present in crude cytosol and which can be removed without destroying the receptor-steroid complex. These and other results argue that the apparent saturation observed in earlier experiments may have been due to the inhibitors. Thus, the actual number of acceptor sites in hepatoma tissue culture cell nuclei is much larger than previously estimated and their affinity for the complex is lower. Nuclear binding experiments indicate that the inhibitory material interacts with the receptor-steroid complex. The inhibitors appear to be macromolecular; but their effects cannot be mimicked by albumin or hemoglobin. The acceptor capacity at low ionic strength for binding receptor-glucocorticoid complexes increases when proceeding from nuclei to DNA. An analysis of the kinetics of association and dissociation and of the relative binding behavior of nuclei and DNA argues that the affinity of complex for nuclei is much greater than for DNA. DNA-associated histones reduce the amount of complex that binds to DNA. These and perhaps other chromosomal proteins may be responsible for the ordering of acceptor capacity. Evidence is presented that the difference in affinities of nuclear and DNA acceptors could also be due to chromosomal proteins. In nuclei, these proteins may thus both reduce the amount of complex binding by rendering regions of DNA less accessible and increase the binding affinity of some, or all, of those DNA binding sites which remain exposed.  相似文献   

2.
The binding of the glucocorticoid receptor-steroid complex from a line of rat hepatoma tissue culture (HTC) cells to DNA has been examined. An equilibrium competition assay involving a constant, low total amount of double-stranded DNA was developed to compare the complex binding ability of DNA free in solution and bound to cellulose. This binding ability is lowered by a factor of five when DNA is associated with cellulose. Similar studies with HTC cell, calf-thymus, and Escherichia coli DNA revealed no difference in the relative number or affinity of binding sites for receptor-steroid complex in each DNA. The synthetic DNA molecules poly[d(A-T)-d(A-T)] and poly[d(G-C)-d(G-C)] bound complexes equally well but less than the three "natural" DNA molecules. This appears to be due to differences in acceptor site affinity and suggests that nucleotide complexity and/or sequence influences the affinity of HTC cell receptor-glucocorticoid complexes for DNA.  相似文献   

3.
Binding to DNA associated with cellulose has been used to investigate the receptor-glucocorticoid complex isolated from a line of rat hepatoma tissue culture cells. The amount of activated complex that bound to DNA was approximately half that which bound to nuclei. Additional results suggest the existence of two forms of the activated glucocorticoid receptor-steroid complex in about equal amounts: one form binds only to nuclei and the other binds to DNA and nuclei. The two forms also differ in their stability, with the DNA/nuclei binging form being relatively labile. The binding of either form to the appropriate acceptor is reduced by cytosol inhibitors by the same mechanism.  相似文献   

4.
5.
In the preceding paper [Cavanaugh, A. H., & Simons, S. S., Jr. (1990) Biochemistry (preceding paper in this issue)], we characterized an apparently identical factor in the cytosol and the nuclear extract of HTC cells that is required for the DNA binding of approximately 43% of the activated receptor-glucocorticoid complexes. In the present study, both those activated complexes that are influenced by this factor and the role of this factor in the process of activation are examined. We find that sodium arsenite inhibits only the DNA binding of those complexes that require factor. Conversely, methyl methane-thiolsulfonate inhibits the DNA binding of only those complexes that are independent of factor. These results provide direct chemical evidence for two populations of activated complexes. Double-reciprocal plots revealed that the increase in DNA binding with endogenous factor occurred by recruiting new complexes for DNA binding as opposed to increasing the binding affinity of existing complexes. These results further suggest that factor associates only with the receptor-steroid complex and does not additionally interact with DNA. A saturable association of factor with complexes was indicated since the amount of available factor in cytosolic solutions decreased after activation of the complexes. Sodium molybdate is known to inhibit the activation of HTC cell receptor-steroid complexes. When factor was added to complexes that had been subjected to activating conditions in the presence of the inhibitor sodium molybdate, no increased DNA binding was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Activation of receptor-steroid complexes to a form with high affinity for DNA is a poorly understood process involving multiple components in addition to the holoreceptor. Employing rat HTC cells as the source of glucocorticoid receptor, we show that maximal receptor binding to calf thymus DNA is mediated by a previously unknown small molecular weight factor. This factor can be removed from cytosolic preparations of receptor by gel filtration chromatography. Salt extraction of crude nuclear pellets afforded much larger amounts of a similar DNA-binding activity factor. The cytoplasmic factor and the more abundant nuclear factor were identical on the basis of their similar physical properties. The factor was precipitable in the crude state with (NH4)2SO4 and stable to heat as well as freezing and thawing. Chromatography on DNA-cellulose revealed that the factor itself did not bind to DNA. The factor could be filtered through a Centricon C-3 microconcentrator (molecular weight cutoff approximately 3000) but was excluded from Sephadex G-10 columns. These parameters enable us to determine an apparent molecular weight of 700-3000 for this factor. The presence of large amounts of this factor in nuclei accounts for the previously unexplained observation that, following size exclusion chromatography, more activated complexes bind to nuclei than to DNA. These data indicate that some, but not all, of the activated complexes require factor to be able to bind to DNA. The predominantly nuclear localization of this factor, coupled with its ability to increase DNA binding, attests to the biological relevance of this factor in the whole cell action of receptor-glucocorticoid complexes.  相似文献   

7.
Some of the early steps of steroid hormone action have been studied in cultured hepatoma cells, in which glucocorticoids induce tyrosine aminotransferase. The hypothesis that inducer steroids promote the binding of specific cytoplasmic receptors to the cell nucleus has been examined in intact cells.Binding of steroids such as dexamethasone and cortisol results in a loss of most of the receptor sites from the cytoplasm. This coincides with the binding of an equivalent number of steroid molecules in the nucleus. Both processes occur concomitantly, even when their kinetics are altered by reducing the temperature. When the inducer is removed from the culture, steroid dissociates from the nucleus while the level of cytoplasmic receptor returns to normal, even if protein or RNA synthesis is inhibited. These results suggest that nuclear binding of glucocorticoids is due to the association with the nucleus of the cytoplasmic receptor-steroid complex itself and make it unlikely that the receptor acts as a mere carrier for the intracellular transfer of the steroid.Steroids that differ in their effects on tyrosine aminotransferase induction were also studied. In contrast to those bound with inducer steroids, receptors complexed with the anti-inducer progesterone did not leave the cytosol. Further, a suboptimal inducer (deoxycorticosterone) produced an intermediate level of depletion. Thus, the biological effect of different classes of steroids can be related to their capacity to promote nuclear binding of the receptor. These data support a model proposed earlier, according to which the receptor is an allosteric regulatory protein directly involved in the hormone action, under the control of specific steroid ligands. They further suggest that the conformational state influenced by the inducer is such that a nuclear binding site on the receptor is exposed.Evidence is also presented that a distinct reaction takes place between the binding of the steroid to the receptor and the association of the complex with the nucleus. At 0 °C, this change is rate-limiting. It could correspond to the “activation” of receptor-steroid complexes known to be required for binding of the complexes by isolated nuclei, and thus represent an additional step in hormone action.  相似文献   

8.
The effects of PP1 and ATP on nuclear binding of the "activated" receptor-[3H]-triamcinolone acetonide (TA) complex purified about 3,000-fold from adrenalectomized rat liver were investigated. ATP at up to 5 mM did not affect nuclear binding of the "activated" complex, but PP1 at 2-7 mM greatly enhanced it. However, ATP in the presence of PP1 decreased nuclear binding dose-dependently. Similar results were obtained in the case of chromatin binding, but PP1 alone did not alter DNA-cellulose binding of the "activated" complex, suggesting that the binding sites for chromatin and DNA on the "activated" complex are different. Furthermore, PP1 enhanced ATP-agarose binding of the "activated" complex, indicating that the PP1 binding site(s) on the receptor is different from the ATP binding site(s). The physicochemical properties of the "activated" receptor-glucocorticoid complex bound with ATP and/or PP1 were examined by sucrose density gradient centrifugation and Sephadex G-150 gel filtration. There was no detectable change in the sedimentation coefficient or molecular weight (about 4.2S; Mr approximately equal to 98,000) on binding with ATP and/or PP1. These results suggest that the binding of PP1 and PP1 plus ATP to the "activated" complex caused some allosteric change of the acceptor binding sites of the receptor, resulting in increase or decrease in its binding to nuclei, chromatin, or DNA.  相似文献   

9.
Binding to DNA associated with cellulose has been used to investigate the receptor-glucorticoid complex isolated from a line of rat hepatoma tissue culture cells. The amount of activated complex that bound to DNA was approximately half that which bound to nuclei. Additional results suggest the existence of two forms of the activated glucocorticoid receptor-steroid complex in about equal amounts: one form binds only to nuclei and the other binds to DNA and nuclei. The two forms also differ in their stability, with the DNA/nuclei binding form being relatively labile. The binding of either form to the appropriate acceptor is reduced by cytosol inhibitors by the same mechanism.  相似文献   

10.
U Gehring  G M Tomkins 《Cell》1974,3(3):301-306
The glucocorticoid, dexamethasone, binds to the specific cytosol receptors of a steroid-resistant mouse lymphoma cell line with the same affinity as to the receptors of the steroid-responsive parental cells. In the sensitive cells, the receptor-steroid complex translocates to the nucleus, whereas in the resistant cells nuclear transfer is greatly diminished. “Activated” receptor-dexamethasone complex from sensitive cells binds to isolated nuclei from both sensitive and resistant cell types, whereas the complex from the resistant cells binds to neither nuclei. Furthermore, the activated complex from sensitive cells binds to isolated homologous and heterologous DNA, whereas the complex from the resistant cells displays greatly reduced binding activity, implying that DNA plays a significant role in nuclear binding. These results suggest that the normal glucocorticoid receptor has two active domains: one for steroid binding, and the other for interaction with nuclear acceptor sites. The resistant cells described in this paper contain a receptor apparently defective in the latter activity.  相似文献   

11.
Some previous reports on acellular binding of glucocorticoid · receptor complexes to rat liver nuclei have pointed to the conclusion that there exists a small number of high affinity nuclear “receptor” sites. Various investigations lead us to the opposite conclusion and suggest that these results were actually due to the presence, in the cytosol, of one or several macromolecules which inhibited the binding to nuclei of steroid · receptor complexes. The mechanism of this inhibition was examined. It appeared to be due not to a competition between both molecules for the same nuclear acceptor site but to an interaction in the cytosol between teh inhibitor and the steroid · receptor complex which prevented the binding of the latter to the nuclei. The search for high affinity specific acceptor sites was also negative for physiological saline conditions and for the non-salt-extractable fraction of the nuclear receptor. When 940-fold purified receptor · steroid complexes were used, very high concentrations of complexes could be achieved and saturation of nuclei was then observed, but only under physiological ionic strength conditions. However, the interaction was of relatively low affinity (KA = 3.8 · 107 M?1) and to a great number of acceptor sites (N = 26.2 pmol/mg DNA), largely exceeding the cellular concentration of receptor (5.8 pmol/mg DNA).These results suggested that saturation of nuclei by steroid · receptor complexes should not occur in the intact liver cell. They were confirmed by studies on the distribution of steroid · receptor complexes in liver slices incubated with various concentrations of [3H]dexamethasone. For all hormone concentrations a constant proportion (90%) of the complexes was found in the nuclei, thus showing no saturation of the nuclear acceptor sites.  相似文献   

12.
Dexamethasone 21-mesylate, an irreversible antiglucocorticoid in HTC cells, forms a covalent receptor-steroid complex which can be activated in cell-free systems. The molecular basis of its antiglucocorticoid activity is unknown; it might result from altered DNA sequence preferences and/or affinities of the covalent receptor-steroid complex. To test this hypothesis, the affinities of both covalent receptor-antagonist and noncovalent receptor-agonist complexes for defined DNA sequences were measured in a DNA binding competition assay. This assay requires neither purified complexes nor large quantities of DNA, yet it provides quantitative comparisons of the affinities of different double-stranded DNAs for binding receptor-steroid complexes. In this assay, activated covalent receptor-dexamethasone 21-mesylate complexes in crude cytosol bound to calf thymus DNA and cloned subregions of the long terminal repeat (LTR) of murine mammary tumor virus (MMTV) proviral DNA with approximately the same relative affinities as did noncovalent receptor-dexamethasone complexes. Both types of complex exhibited similar orders of preferential binding to DNA sequences. LTR subregions, as well as the entire LTR, were 2-20 times more potent competitors than calf thymus DNA. Cloned sequences from the 3' terminus of the LTR were more effective competitors than either the entire LTR or comparably sized DNAs from the 5' terminus. The DNA sequences with the greatest affinities for both covalent and noncovalent complexes are located within the region of -221 to -67. These studies support the theory that recognition by regulatory elements of specific DNA sequences upstream of responsive genes is an integral step of hormone action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We previously reported that activated glucocorticoid receptor-steroid complexes from rat HTC cell cytosol exist as at least two sub-populations, one of which requires a low molecular weight (700–3000 Da) factor(s) for binding to DNA. This factor is removed by Sephadex G-50 chromatography and is found predominantly in extracts of crude HTC cell nuclei. We have now determined that factor is not limited to HTC cells since an apparently identical factor(s) was found in nuclear extracts of rat kidney and liver as well as human HeLa and MCF-7 cells. Furthermore, the DNA binding of a sub-population of human glucocorticoid receptors depends on factor. While these results were obtained with agonist (dexamethasone) bound receptors, a sub-population of HTC cell receptors covalently labeled by the antiglucocorticoid dexamethasone 21-mesylate also displayed factor-dependent DNA binding. This receptor heterogeneity was not an artifact of cell-free activation since the cell-free nuclear binding of dexamethasone mesylate labeled complexes was, as in intact cells, less than that for dexamethasone bound complexes. Earlier results suggested that the increased DNA binding with factor involved a direct interaction of receptor with factor(s). We now find that the factor-induced DNA binding is retained by amino terminal truncated (42 kDa) glucocorticoid receptors from HTC cells. Thus the ability of receptor to interact with factor(s) is encoded by the DNA and/or steroid binding domains. Two dimensional gel electrophoresis analysis of dexamethasone-mesylate labeled 98 kDa receptors revealed multiple charged isoforms for both sub-populations but no differences in the amount of the various isoforms in each sub-population. Finally, activated progesterone and estrogen receptor complexes were also found to be heterogeneous, with a similar, if not identical, small molecular weight factor(s) being required for the DNA binding of one sub-population. The observations that functional heterogeneity of receptors is not unique to glucocorticoid receptors, whether bound by an agonist or antagonist, and that the factor(s) is neither species nor tissue specific suggests that factor-assisted DNA binding may be a general mechanism for all steroid receptors.  相似文献   

14.
The multiple classes of binding sites for the progesterone-receptor complex in hen oviduct muclei were found to be of chromatin origin. The highest-affinity, and presumably most physiologically important class, is localized in oviduct chromatin and contains approx. 6000-10000 sites per nucleus. None of these sites is detected in spleen chromatin. Two new techniques were used for assaying rapidly the binding of steroid-receptor complexes to soluble deoxyribonucleoproteins in vito. The extent of high-affinity binding by the nucleo-acidic protein fraction from spleen chromatin is as great as that by the nucleo-acidic protein from oviduct chromatin. Consequently the tissue-specific nuclear binding of the progesterone receptor is found not to be a consequence of the absence of the nuclear binding sites (acceptors) from chromatin of non-target tissue (spleen), but rather a result of complete masking of these sites. In the target-tissue (oviduct) chromatin, approx. 70% of the high-affinity acceptor sites are also masked. Acidic proteins, and not histones, appear to be responsible for the masking of these acceptor sites. In addition, acidic proteins represent (or at least are an essential part of) these high-affinity sites in the oviduct nucleus. Pure DNA displays a few high-and many low-affinity binding sites. In support of previous work with immature chicks, the acidic protein fraction of the nucleo-acidic results thus support the hypotheis that protein complexed with DNA, and not DNA alone, represent the high-affinity binding sites for the steroid-receptor complexes in nuclear chromatin. The lower-affinity classes of binding sites may represent DNA and/or other nuclear components.  相似文献   

15.
Acceptor sites for the oestrogen receptor in hen oviduct chromatin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Partially purified hen oviduct oestrogen receptors, charged with [3H]oestradiol, were shown to specifically bind in vitro to purified hen oviduct chromatin. Maximal binding occurred within 60min at 0 degrees C in a Tris buffer containing 0.1 M-KCl and 0.5 mM-phenylmethanesulphonyl fluoride. The binding of the [3H]oestradiol-receptor complexes to intact purified chromatin was saturable, whereas the receptor binding to hen DNA remained linear. Saturation was further demonstrated by the minimal acceptor binding of receptor charged with [3H]oestradiol plus 200-fold oestradiol compared with [3H]oestradiol receptors at equal [3H]oestradiol concentrations. Scatchard analysis of [3H]oestradiol-receptor binding to chromatin above DNA levels gave indications of high-affinity binding with a low capacity. Further, the nuclear binding was tissue-specific since the binding to hen spleen chromatin was negligible. To further uncover the specific acceptor sites, proteins were removed from hen oviduct chromatin by increasing concentrations of guanidine hydrochloride (1-7M). Those residual fractions extracted with 3-7 M-guanidine hydrochloride had the highest acceptor activity (above DNA levels) with the peak activity uncovered by 5 M-guanidine hydrochloride. To further characterize the oestrogen-receptor acceptor sites, oviduct chromatin was bound to hydroxyapatite in the presence of 3 M-NaCl and then protein fractions were extracted sequentially with 1-7 M-guanidine hydrochloride. Each fraction was then reconstituted to pure hen DNA by reverse gradient dialysis. [3H]Oestradiol receptors were found to bind to the greatest degree to the fraction reconstituted from the 5 M-guanidine hydrochloride protein extract. Reconstituted nucleoacidic proteins (NAP) from combined 4-7 M-guanidine hydrochloride protein extracts showed saturable binding by [3H]-oestradiol receptors, whereas binding to hen DNA did not saturate. The high affinity, low capacity, and specificity of binding of oestrogen receptors to NAP was similar to that found in intact chromatin. Thus, chromatin acceptor proteins for the oestrogen receptor have been partially isolated and characterized in the hen oviduct and display properties similar to that reported for the acceptor proteins of the progesterone receptor.  相似文献   

16.
An assay method in vitro was developed and applied to quantify acceptor binding of steroid-receptor complexes in nuclei from isolated epithelium of guinea-pig seminal vesicle. Steroid-receptor complex prepared from 1-day-castrated animals was incubated with purified nuclei from 1-28 day-castrated animals in a medium containing 0.15 M-KCl. Free and bound steroid-receptor complexes were measured and the data were submitted to Scatchard analysis. With nuclei from 1-day-castrated animals the Kd for binding of cytosolic [3H]dihydrotestosterone-receptor complexes was found to be 0.83 X 10(-10) M and the capacity for binding was 0.35 pmol/mg of nuclear DNA. Scatchard analysis consistently disclosed only a single line of constant slope and gave the same kinetic constants for nuclei obtained from animals castrated up to 28 days before assay. Administration of 2 mg of dihydrotestosterone, 3 alpha-androstanediol or androsterone or 100 microgram of oestradiol-17 beta 1 h before killing of the 1-day-castrated animals that provided the nuclei resulted in a significant decrease in nuclear acceptor binding of the steroid-receptor complex compared with untreated animals. Thus our assay method disclosed nuclear acceptor sites that may be involved in responses to androgens (and oestrogens) in vivo. We conclude that there is a class of nuclear accept or sites of high affinity and limited capacity that may be occupied by steroid-receptor complexes in vivo.  相似文献   

17.
Receptor binding in the rat liver nuclear matrix   总被引:1,自引:0,他引:1  
3H-Dexamethasone (Dex)-receptor complexes prepared from the rat liver cytosol efficiently bound to the nuclear matrix from the same tissue. The binding was increased with the concentration of the 3H-Dex-receptor complex added and reached a maximum plateau. However, when the partially purified 3H-Dex-receptor complex was used, saturation of the binding sites in the nuclear matrix was not observed in the range of concentration of 3H-Dex-receptor complex used. Therefore, it was considered that the apparent saturability observed in the binding of the unpurified receptor complexes is caused by the translocation inhibitor(s) in the cytosol. When the binding capacity was expressed on the basis of unit weight of DNA, the nuclear matrix exhibited 20 times more of that of the unfractionated nuclei. However, no line of evidence of enrichment of the binding sites in the DNA isolated from the nuclear matrix was observed. These observations show that the role of the nuclear matrix in the action of glucocorticoid is quite uncertain.  相似文献   

18.
When hen oviduct cytosol samples containing progesterone receptor complexed to [3H]progesterone were included with isolated nuclei in presence of 0.2 mM aurintricarboxylic acid, more than 50% inhibition occurred in the uptake of progesterone receptor by the nuclei. The activated form of progesterone receptor appeared to be more sensitive to the presence of aurintricarboxylic acid since pretreatment of non-activated progesterone receptor with the inhibitor and the subsequent removal of the latter prior to activation did not result in the inhibition of receptor uptake by the nuclei. Also, the binding of progesterone receptor to columns of DNA-cellulose or ATP-Sepharose was abolished under simmilar conditions. When nuclei, ATP-Sepharose or DNA-cellulose were preincubated with the inhibitor prior to the addition of receptor preparations, no such inhibition resulted indicating that the inhibitor may be interacting with the receptor protein and not complexing to ATP, DNA or sites in the nuclei. The steroid binding properties of progesterone receptor, however, remained intact under these conditions. Both A and B forms of progesterone receptor are equally sensitive to aurintricarboxylic acid presence when tested for their nuclear uptake. Aurintricarboxylic acid was also found to be very effective at low concentrations (0.25 mM) in eluting the receptor complexes off ATP-Sepharose columns without disrupting the steroid binding properties of progesterone receptor. Our results suggest that auintricarboxylic acid is an effective inhibitor of progesterone receptor and that it may be acting by interfering with a site(s) on progesterone receptor which may be exposed upon activation and are involved in such processes as ATP binding, nuclear uptake and DNA binding. These observations suggest the use of aurintricarboxylic acid as a chemical probe for the analysis of progesterone receptor.  相似文献   

19.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

20.
Dilution at 0 degrees of rat liver cytosol incubated with [3H]triamcinolone acetonide provoked an enhanced binding of steroid-receptor complexes to nuclei. The explanation of this phenomenon was found to be an "activation" of the complexes. Dilution acted by decreasing the concentration of a cytosol inhibitor. This reaction was irreversible at 0 degrees: once activated the complexes could not be reversed to the nonactivated state by the addition of inhibitor. The presence of hormone was necessary, since hormone-free receptor molecules could not be activated by dilution. Removal of the inhibitor did not lead to activation of all complexes: after 24 h a "plateau" was attained where 55 to 70% of the complexes were activated. The inhibitor was shown to be a low molecular weight molecule by dialysis, Sephadex G-25 chromatography, ammonium sulfate precipitation, and ultrafiltration. Thus [3H]triamcinolone acetonide-receptor complexes present in a cytosol from which the inhibitor had been removed by Sephadex G-25 chromatography became spontaneously activated at low ionic strength and at 0 degrees. The inhibitor is not a steroid (at least of usual polarity) since it cannot be extracted by methylene chloride or adsorbed by activated charcoal. It is thermostable (resists to 30 min at 100 degrees). Its removal by incubation with a cation exchange resin suggests that it may be positively charged, however it is not complexed by EDTA. This inhibitor must be distinguished from a previously described inhibitor of steroid-receptor complexes binding to nuclei. The latter compound has been shown in various systems to be responsible for an artifactual saturation of nuclear acceptor by steroid-receptor complexes. It inhibits the binding to nuclear acceptors of already activated complexes and is probably a macromolecule. It is thus different from the low molecular weight activation inhibitor described in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号