首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion.  相似文献   

2.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

3.
Impaired lysosomal activity, which results in defective protein processing, waste accumulation, and protein aggregation, is implicated in a number of disease pathologies. Acidification of lysosomes is a crucial process required for lysosome function. Previously we showed that inhibition of glycogen synthase kinase-3 (GSK-3) enhanced lysosomal acidification in both normal and pathological conditions. However, how GSK-3 integrates into the lysosome networking is unknown. Here we show that inhibition of mTORC1 and increased autophagic activity are downstream to GSK-3 inhibition and contribute to lysosomal acidification. Strikingly, lysosomal acidification is also restored by GSK-3 inhibition in the absence of functional autophagy, and, independently of mTORC1. This is facilitated by increased endocytic traffic: We show that GSK-3 inhibition enhanced material internalization, increased recruitment of active Rab5 into endosomes, and increased Rab7/RILP clustering into lysosomes, all processes required for late endosome maturation. Consistently, in cells defective in endocytic traffic caused by either constitutively active Rab5, or, deletion of the Niemann-Pick C1 protein, GSK-3 inhibition could not restore lysosomal acidification. Finally we found that the tuberous sclerosis complex, TSC, is required for lysosomal acidification and is activated by GSK-3 inhibition. Thus, the GSK-3/TSC axis regulates lysosomal acidification via both the autophagic and endocytic pathways. Our study provides new insights into the therapeutic potential of GSK-3 inhibitors in treating pathological conditions associated with impaired cellular clearance.  相似文献   

4.
Proton-translocating ATPase and lysosomal cystine transport   总被引:6,自引:0,他引:6  
A proton-translocating ATPase was identified in highly purified lysosomes from Epstein-Barr virus-transformed human lymphoblasts. Activity of this ATPase caused acidification of highly purified, fluorescein isothiocyanate dextran-loaded lysosomes and correlated with the ATP-dependent efflux of lysosomal cystine. The lysosomal ATPase was distinct from mitochondrial F1-ATPase in its responses to a variety of inhibitors. Although ATP-dependent lysosomal cystine efflux is not demonstrable in cultured lymphoblasts from individuals with nephropathic cystinosis, ATPase activity and acidification in lysosomes from these cells is comparable to that in noncystinotic lysosomes. ATPase activity in lymphoblasts from normal individuals was 543 +/- 79 nmol/mg/min while in lymphoblasts from cystinotic individuals this activity was 541 +/- 25 nmol/mg/min. ATP-dependent acidification of lysosomes from normals was -0.5 +/- 0.1 pH units compared to -0.5 +/- 0.1 pH units in cystinotic lysosomes. Activity of the lysosomal proton-translocating ATPase is a necessary, but not sufficient, condition for lysosomal cystine efflux.  相似文献   

5.
Apoptosis is often associated with acidification of the cytosol and since loss of lysosomal proton gradient and release of lysosomal content are early events during apoptosis, we investigated if the lysosomal compartment could contribute to cytosolic acidification. After exposure of U937 cells to tumor necrosis factor-α, three populations; healthy, pre-apoptotic, and apoptotic cells, were identified by flow cytometry. These populations were investigated regarding intra-cellular pH and apoptosis-associated events. There was a drop in cytosolic pH from 7.2 ± 0.1 in healthy cells to 6.8 ± 0.1 in pre-apoptotic, caspase-negative cells. In apoptotic, caspase-positive cells, the pH was further decreased to 5.7 ± 0.04. The cytosolic acidification was not affected by addition of specific inhibitors towards caspases or the mitochondrial F0F1-ATPase. In parallel to the cytosolic acidification, a rise in lysosomal pH from 4.3 ± 0.3, in the healthy population, to 4.8 ± 0.3 and 5.5 ± 0.3 in the pre-apoptotic- and apoptotic populations, respectively, was detected. In addition, lysosomal membrane permeability increased as detected as release of cathepsin D from lysosomes to the cytosol in pre-apoptotic and apoptotic cells. We, thus, suggest that lysosomal proton release is the cause of the cytosolic acidification of U937 cells exposed to TNF-α.  相似文献   

6.
The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7–deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes.  相似文献   

7.
Incomplete lysosomal acidification in microglia inhibits the degradation of fibrillar forms of Alzheimer's amyloid β peptide (fAβ). Here we show that in primary microglia a chloride transporter, ClC-7, is not delivered efficiently to lysosomes, causing incomplete lysosomal acidification. ClC-7 protein is synthesized by microglia but it is mistargeted and appears to be degraded by an endoplasmic reticulum-associated degradation pathway. Activation of microglia with macrophage colony-stimulating factor induces trafficking of ClC-7 to lysosomes, leading to lysosomal acidification and increased fAβ degradation. ClC-7 associates with another protein, Ostm1, which plays an important role in its correct lysosomal targeting. Expression of both ClC-7 and Ostm1 is increased in activated microglia, which can account for the increased delivery of ClC-7 to lysosomes. Our findings suggest a novel mechanism of lysosomal pH regulation in activated microglia that is required for fAβ degradation.  相似文献   

8.
受体介导内吞对巨噬细胞膜电位、胞浆和溶酶体pH的影响   总被引:1,自引:0,他引:1  
Lei GH  Piao YJ  Wu JC  Bao YY  Huang H  Zhang W 《生理学报》1998,50(1):111-114
本文利用荧光标记方法测定了刀豆素A、麦芽凝集素、酵母多糖刺激引起的巨噬细胞膜电位、胞浆pH溶酶体pH的变化。结果显示三种配体均导致细胞膜电位超极化,胞浆pH降低、溶酶体pH或高,三个生理参量趋于稳定时间稍有不同。胞浆pH的降低可能有抑制内吞的作用,溶酶体pH上升是触发溶酶体内容物外排的基本因素。内吞引起的这些变化是细胞代谢过程中自我调节和保护的表现。  相似文献   

9.
Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.  相似文献   

10.
本文利用激光扫描共聚焦显微镜A-CAS570从细胞形态学和功能两方面,研究了刀豆素A(Concanavalin A,Con A)、麦芽凝集素(Wheat Germ Agglutinin,WGA)、酵母多糖(Zymosan A,Z.A)对小鼠腹腔巨噬细胞胞质pH和溶酶体内荧光探针FITC—Dextran排出细胞的影响。结果显示三种配体加入细胞外液10min内,胞质pH很快下降,此后维持在该水平;在15min左右细胞外FITC一Dextran迅速增加,20min后变化趋于停止;在三种配体加入后15min左右,细胞内溶酶体在质膜内侧增多;25—30min溶酶体重新向细胞中央运动。根据上述实验结果,我们认为溶酶体pH升高是触发溶酶体内荧光探针通过胞吐作用排出细胞的必要条件,胞质酸化抑制溶酶体内容物通过胞吐作用排出细胞。配体刺激引起的溶酶体内容物通过胞吐作用排出细胞和胞质酸化是细胞自我调节和保护的一种反映。  相似文献   

11.
The effects of Con A, WGA, Zymosan A on macrophage cytosolic pH and outflow of lysosomal content through exocytosis were studied with SNAFL-calcein and FITC-Dextran on ACAS570. The results showed all three ligands could induce macrophage cytosolic acidification in about 10 min and kept at the same level hereafter; outflow of lysosomal fluorescent probe through exocytosis appeared in 15-20 min. In resting conditions, macrophage lysosomes mainly distributed in cell center; after stimulated for 15 min by three ligands, the number of lysosomes increased in membrane periphery, in 25-30 min lysosomes moved back toward cell center. We proposed that ligands induced lysosomal pH rises was a basic factor for outflow of lysosomal content through exocytosis, cytosolic acidification inhibited receptor-mediated endocytosis. Cytosolic acidification and outflow of lysosomal content through exocytosis were the results of cellular self-regulation and self-protection during receptor-mediated endocytosis.  相似文献   

12.
The temperature dependence of acidification of internalized dextran by Swiss 3T3 cells was determined using dual fluorescence flow cytometry. Essentially no acidification was observed at 11 degrees C; acidification was limited to pH 6-6.5 at temperatures between 13 degrees C and 17 degrees C. In contrast, a rapid drop to pH 6-6.5 followed by acidification to pH 5-5.5 was observed at temperatures above 19 degrees C. These results confirm the biphasic nature of the acidification process (J. Cell Biol. (1984) 98: 1757-1762). The timing of exposure of material internalized by fluid-phase endocytosis to lysosomal enzymes was determined for Swiss 3T3 cells by using a fluorogenic substrate specific for Cathepsin B. Hydrolysis of the substrate, as measured by both fluorometry and flow cytometry, began within minutes of its addition to cells at 37 degrees C, and was inhibited by coincubation with leupeptin, a competitive inhibitor of the enzyme, or by weak bases, which raise the pH of acidic compartments. At temperatures between 13 degrees (and 21 degrees C, the rate of hydrolysis was reduced to 31-44% of that at 37 degrees C. Thus, in contrast to previous reports, exposure of endocytosed material to at least one lysosomal enzyme is not inhibited below 20 degrees C; the reduction in hydrolysis rate may be explained by the temperature effects on the efficiency of the enzyme. The results for acidification and proteolysis are consistent with, but do not prove, a maturation model for the formation of lysosomes. We suggest that at lower temperatures, part of the maturation involving recycling and/or concentration of the contents of the endosome is inhibited. This causes the endosome to remain as a mildly acidic, low-density organelle containing lysosomal enzymes.  相似文献   

13.
Inhibitors of lysosomal acidification (4,4'-di-isothiocyanostilbene-2,2'-disulphonate, NN'-dicyclohexylcarbodi-imide, carbonyl cyanide m-chlorophenylhydrazone, NH4Cl and methylamine hydrochloride) did not alter cystine egress or countertransport in polymorphonuclear-leucocyte lysosome-rich granular fractions at pH 7.0. Together, 2 mM-MgCl2/MgATP and 90 mM-KCl stimulated cystine egress 2-fold, but this effect also was not influenced by inhibitors of ATP-dependent lysosomal acidification. MgCl2/MgATP stimulated cystine transport at pH 5.5, but the effect also occurred with MgCl2, MgSO4 or MnCl2 alone, was prevented by chelation, and was not seen with NaATP; therefore, it was considered a bivalent-cation, not an ATP, effect. Proton-pump-mediated acidification of lysosomes does not appear to be required for cystine transport in normal polymorphonuclear-leucocyte granular fractions, as reported for lymphoblast lysosomes.  相似文献   

14.
Astaxanthin (AXN) is known to have health benefits by epidemiological studies. Therefore, it is of interest to assess the effect of AXN (derived from indigenous unicellular green alga Haematococcus lacustris) to modulate cell cycle arrest, lysosomal acidification and eventually apoptosis using in vitro in A549 lung cancer cells. Natural extracts of astaxanthin were obtained by standardized methods as reported earlier and characterized by standard HPLC and MS. Treatment of A549 cells with AXN (purified fraction) showed significant reduction in cell viability (about 50%) as compared to crude extract at 50µM concentration. Thus, we show the anticancer effects and lysosomal acidification in A549 cells by Astaxanthin from Haematococcus lacustris for further consideration. Together, our results demonstrated the anticancer potential of AXN from Haematococcus lacustris, which is found to be mediated via its ability to induce cell cycle arrest, lysosomal acidification and apoptotic induction.  相似文献   

15.

Background

Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells.

Methodology/Principal Findings

Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification.

Conclusions/Significance

Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.  相似文献   

16.
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.  相似文献   

17.
Tilorone, an amphiphilic cationic compound with antiviral activity perturbed the lysosomal system. In cultured fibroblasts tilorone induced storage of sulfated glycosaminoglycans, enhanced secretion of precursor forms of lysosomal enzymes, inhibited intracellular proteolytic maturation of lysosomal enzymes, and inhibited receptor-mediated endocytosis of lysosomal enzymes. In isolated lysosomes tilorone was found to increase pH and to abolish the ATP-dependent acidification. These effects suggest that tilorone acts like a weak base that accumulates in acid compartments of the cells, raises the pH therein and interferes with lysosomal catabolic activity and with receptor-mediated transport of lysosomal enzymes.  相似文献   

18.
Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca2+-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe2+, Ca2+ and Zn2+ transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.  相似文献   

19.
We previously described the isolation and preliminary characterization of a Chinese hamster ovary cell mutant, termed G.7.1, that carried a temperature-sensitive, conditional-lethal lesion affecting the acidification of vesicles in crude cellular extracts (Marnell, M. H., Mathis, L. S., Stookey, M., Shia, S.-P., Stone, D. K., and Draper, R. K. (1984) J. Cell Biol. 99, 1907-1916). In the present report, we have separated lysosomal vesicles from more buoyant nonlysosomal vesicles by centrifuging cell extracts with Percoll and correlated the acidification defect with nonlysosomal vesicles, including endosomes, but not with secondary lysosomes. Moreover, the acidification of nonlysosomal vesicles prepared from mutant cells grown at the permissive temperature was more sensitive to thermal inactivation than similar vesicles from parental cells, implying that a heat-sensitive component is a normal resident of nonlysosomal vesicles in the mutant. This heat-sensitive component is apparently not associated with lysosomes, or if it is, it does not inhibit lysosomal acidification at the nonpermissive temperature. We also found that the transferrin-mediated uptake of iron is inhibited by 50% in the mutant cells at the nonpermissive temperature and that the inhibition cannot be accounted for by reduced binding or internalization of transferrin.  相似文献   

20.
GTP-binding proteins have been identified on the membranes of highly purified dextran-filled lysosomes (dextranosomes) and Triton-filled lysosomes (tritosomes) obtained from rat liver. Autoradiography of blots of lysosomal membrane proteins incubated with [alpha-32P]GTP revealed the presence of several specific GTP-binding proteins with a relative molecular mass (M(r)) predominantly in the range of 26-30 kDa. These GTP-binding proteins migrated slower in polyacrylamide gels than purified c-Ha-ras protein expressed in E. coli, whose apparent M(r) was 23 kDa in the same blot. The relative contents of GTP-binding proteins in lysosomal membranes were comparable or greater than that of plasma membranes and of microsomes. Chemical extraction showed that lysosomal GTP-binding proteins were more tightly associated with the membranes than with microsomal GTP-binding proteins. The possible involvement of lysosomal GTP-binding proteins in cellular functions including vacuolar (lysosomal) acidification and organellar dynamics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号