首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sweetpotato genomic research is minimal compared to most other major crops despite its worldwide importance as a food crop. The development of a genetic linkage map in sweetpotato will provide valuable information about the genomic organization of this important species that can be used by breeders to accelerate the introgression of desired traits into breeding lines. We developed a mapping population consisting of 240 individuals of a cross between ‘Tanzania’, a cream-fleshed African landrace, and ‘Beauregard’, an orange-fleshed US sweetpotato cultivar. The genetic linkage map of this population was constructed using Amplified Fragment Length Polymorphism (AFLP) markers. A total of 1944 (‘Tanzania’) and 1751 (‘Beauregard’) AFLP markers, of which 1511 and 1303 were single-dose markers respectively, were scored. Framework maps consisting of 86 and 90 linkage groups for ‘Tanzania’ and ‘Beauregard’ respectively, were developed using a combination of JoinMap 3.0 and MAPMAKER/EXP 3.0. A total of 947 single-dose markers were placed in the final framework linkage map for ‘Tanzania’. The linkage map size was estimated as 5792 cM, with an average distance between markers of 4.5 cM. A total of 726 single-dose markers were placed in the final framework map for ‘Beauregard’. The linkage map length was estimated as 5276 cM, with an average distance between markers of 4.8 cM. Duplex and triple-dose markers were used to identify the corresponding homologous groups in the maps. Our research supports the hypothesis that sweetpotato is an autopolyploid. Distorted segregation in some markers of different dosages in this study suggests that some preferential pairing occurs in sweetpotato. However, strict allopolyploid inheritance in sweetpotato can be ruled out due to the observed segregation ratios of the markers, and the proportion of simplex to multiple-dose markers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is a portion of a dissertation submitted by Jim C. Cervantes-Flores.  相似文献   

2.

Background

Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated.

Results

Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs.

Conclusions

The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-152) contains supplementary material, which is available to authorized users.  相似文献   

3.
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0–45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.  相似文献   

4.
张烈  钱敏  代方银  赵爱春  鲁成 《昆虫学报》2008,51(3):246-257
为了进行家蚕Bombyx mori数量性状的QTL定位研究,以白色茧系品种C100 (♀)和近交系大造(P50)(♂)杂交得到F1,用F1(♂)与双隐性标记的C100 (♀)回交,得到回交一代(BC1),用改进的AFLP分子标记方法,经96组选择性扩增引物扩增,获得分离比为1∶1(P≤0.05)的1 744个AFLP位点。用Map Manager QTXb19(Version 0.29)连锁图谱构建软件,构建了具有814个标记,36个连锁群的家蚕高密度AFLP分子标记连锁图谱。该连锁图谱覆盖的家蚕基因组长度为13 005 cM,连锁群长度变化范围为109.0~1 573.7 cM,连锁群的平均长度为361.25 cM,其标记间平均图距15.98 cM,最小图距2.3 cM,最大图距47.7 cM,标记间大于30 cM的gap共有39个。该连锁图平均每个连锁群23个标记,最多一个连锁群有92个标记,最少8个标记。该连锁图谱确定了与经典实验遗传图谱第15连锁群和W染色体连锁群相对应的两个连锁群。  相似文献   

5.
The genus Salix (willow) contains a number of species of great value as biomass crops. Efforts to breed varieties with improved biomass yields and resistances to pests and diseases are limited by the lack of knowledge on the genetic basis of the traits. We have used AFLP and microsatellite markers to construct a genetic map of willow from a full-sib cross of the diploid species Salix viminalis (2n = 38). In accordance with a double pseudo-testcross approach, separate parental maps were constructed and merged to produce a consensus map comprising 291 AFLP and 39 willow microsatellite markers. Nineteen poplar microsatellites were also tested in willow. Five of these amplified loci, of which two were mapped. Linkage groups of the consensus map that could be identified in the parental maps are presented here and spanned 1,256.5 cM with an average interval between markers of 4.4 cM.  相似文献   

6.
L. Cheng  L. Liu  X. Yu  D. Wang  J. Tong 《Animal genetics》2010,41(2):191-198
Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non‐normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker‐assisted breeding in this species.  相似文献   

7.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

8.
Development of SSR markers and construction of a linkage map in jute   总被引:1,自引:0,他引:1  
Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.  相似文献   

9.
A genetic linkage mapping study was conducted in 93 doubled-haploid lines derived from a cross between Triticum aestivum L. em. Thell 'Arina' and a Norwegian spring wheat breeding line, NK93604, using diversity arrays technology (DArT), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. The objective of this study was to understand the distribution, redundancy, and segregation distortion of DArT markers in comparison with AFLP and SSR markers. The map contains a total of 624 markers with 189 DArTs, 165 AFLPs and 270 SSRs, and spans 2595.5 cM. All 3 marker types showed significant (p < 0.01) segregation distortion, but it was higher for AFLPs (24.2%) and SSRs (22.6%) than for DArTs (13.8%). The overall segregation distortion was 20.4%. DArTs showed the highest frequency of clustering (27.0%) at < 0.5 cM intervals between consecutive markers, which is 3 and 15 times higher than SSRs (8.9%) and AFLPs (1.8%), respectively. This high proportion of clustering of DArT markers may be indicative of gene-rich regions and (or) the result of inclusion of redundant clones in the genomic representations, which was supported by the presence of very high correlation coefficients (r > 0.98) and multicollinearity among the clustered markers. The present study is the first to compare the utility of DArT with AFLP and SSR markers, and the present map has been successfully used to identify novel QTLs for resistance to Fusarium head blight and powdery mildew and for anther extrusion, leaf segment incubation, and latency.  相似文献   

10.
11.
We exploited the AFLP technique to saturate a RFLP linkage map derived from a maize mapping population. By using two restriction enzyme, EcoRI and PstI, differing in methylation sensitivity, both in combination with MseI, we detected 1568 bands of which 340 where polymorphic. These were added to the exitsing RFLP marker data to study the effects of incorporation of AFLPs produced by different restriction-enzyme combinations upon genetic maps. Addition of the AFLP data resulted in greater genome coverage, both through linking previously separate groups and the extension of other groups. The increase of the total map length was mainly caused by the addition of markers to telomeric regions, where RFLP markers were poorly represented. The percentage of informative loci was significantly different between the EcoRI and PstI assays. There was also evidence that PstI AFLP markers were more randomly distributed across chromosomes and chromosome regions, while EcoRI AFLP markers clustered mainly at centomeric regions. The more-random ditsribution of PstI AFLP markers on the genetic map reported here may reflect a preferential localisation of the markers in the hypomethylated telomeric regions of the chromosomes. Received: 22 December 1998 / Accepted: 25 March 1999  相似文献   

12.
A genetic linkage map of an intraspecific cross between 2 Silene vulgaris s.l. ecotypes is presented. Three-hundred AFLP markers from 2 different restriction enzyme combinations were used to genotype an F2 mapping population. Maternal and paternal pure-coupling phase maps with 114 and 186 markers on 12 and 13 linkage groups, respectively, were constructed. Total map length of the paternal and maternal maps are 547 and 446 Kosambi cM, respectively. Nearly half of the markers (49%) exhibited significant transmission ratio distortion. Genome coverage and potential causes of the observed segregation ratio distortions are discussed. The maps represent a first step towards the identification of quantitative trait loci associated with habitat adaptation in the non-model species Silene vulgaris.  相似文献   

13.
A first linkage map of pecan cultivars based on RAPD and AFLP markers   总被引:7,自引:0,他引:7  
We report here the first genetic linkage maps of pecan [Carya illinoinensis (Wangenh.) K. Koch], using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. Independent maps were constructed for the cultivars Pawnee and Elliot using the double pseudo-testcross mapping strategy and 120 F1 seedlings from a full-sib family. A total of 477 markers, including 217 RAPD, 258 AFLP, and two morphological markers were used in linkage analysis. The Pawnee linkage map has 218 markers, comprising 176 testcross and 42 intercross markers placed in 16 major and 13 minor (doublets and triplets) linkage groups. The Pawnee linkage map covered 2,227 cM with an average map distance of 12.7 cM between adjacent markers. The Elliot linkage map has 174 markers comprising 150 testcross and 22 intercross markers placed in 17 major and nine minor linkage groups. The Elliot map covered 1,698 cM with an average map distance of 11.2 cM between adjacent markers. Segregation ratios for dichogamy type and stigma color were not significantly different from 1:1, suggesting that both traits are controlled by single loci with protogyny and green stigmas dominant to protandry and red stigmas. These loci were tightly linked (1.9 cM) and were placed in Elliot linkage group 16. These linkage maps are an important first step towards the detection of genes controlling horticulturally important traits such as nut size, nut maturity date, kernel quality, and disease resistance.  相似文献   

14.
15.
Construction of a genetic linkage map for roses using RAPD and AFLP markers   总被引:15,自引:0,他引:15  
A segregating population of diploid rose hybrids (2n = 2x = 14) was used to construct the first linkage maps of the rose genome. A total of 305 RAPD and AFLP markers were analysed in a population of 60 F1 plants based on a so-called ”double-pseudotestcross” design. Of these markers 278 could be located on the 14 linkage groups of the two maps, covering total map lengths of 326 and 370 cM, respectively. The average distances between markers in the maps for 93/1–117 and 93/1–119 is 2.4 and 2.6 cM, respectively. In addition to the molecular markers, genes controlling two phenotypic characters, petal number (double versus single flowers) and flower colour (pink versus white), were mapped on linkage groups 3 and 2, respectively. The markers closest to the gene for double flowers, Blfo, and to the gene for pink flower colour, Blfa, cosegregated without recombinants. The maps provide a tool for further genetic analyses of horticulturally important genes as, for example, resistance genes and a starting point for marker-assisted breeding in roses. Received: 22 September 1998 / Accepted: 12 March 1999  相似文献   

16.
17.
The Japanese quail (Coturnix japonica) is a notably valuable egg and meat producer but has also been used as a laboratory animal. In the present study, we constructed a Japanese quail linkage map with 1735 polymorphic amplified fragment length polymorphisms markers, and nine chicken microsatellite (MS) markers, as well as sex and phenotypes of two genetic diseases; a muscular disorder (LWC) and neurofilament-deficient mutant (Quv). Linkage analysis revealed 578 independent loci. The resulting linkage map contained 44 multipoint linkage groups covering 2597.8 cM and an additional 218.2 cM was contained in 21 two-point linkage groups. The total map was 2816 cM in length with an average marker interval of 5.5 cM. The Quv locus was located on linkage group 5, but linkage was not found between the LWC locus and any of the markers. Comparative mapping with chicken using orthologous markers revealed chromosomal assignments of the quail linkage group 1 to chicken chromosome 2 (GGA2), 5 to GGA22, 2 to GGA5, 8 to GGA7, 27 to GGA11, 29 to GGA1 and 45 to GGA4.  相似文献   

18.
A genetic map of kiwifruit (Actinidia spp.) was constructed using microsatellite and AFLP markers and the pseudo-testcross mapping strategy. (AC)n and (AG)n microsatellite repeats were first isolated from Actinidia chinensis (2n = 2x = 58) enriched genomic libraries and tested for segregation in the interspecific cross between the diploid distantly related species A. chinensis and A. callosa. Some 105 microsatellite loci of the 251 initially tested segregated in the progeny in a 1:1 ratio as in a classical backcross, or in a ratio which could mimic the backcross, and were mapped using 94 individuals. AFLP markers were then produced using MseI and EcoRI restriction enzymes and 15 primer combinations. Nearly 10% of loci showed a distorted segregation at α = 0.05, and only 4% at α = 0.01, irrespectively to the marker class. Two linkage maps were produced, one for each parent. The female map had 203 loci, of which 160 (71 SSR and 89 AFLP) constituted the framework map at a LOD score ≥ 2.0. The map was 1,758.5 cM(K) long, covering 46% of the estimated genome length. The male map had only 143 loci, of which 116 (28 SSR, 87 AFLP and the sex determinant) constituted the framework map. The map length was only 1,104.1 cM(K), covering 34% of the estimate genome length. Only 35 SSR loci were mapped in the male parent because 18% of SSR loci that were characterised did not amplify in A. callosa, and 48% were homozygous. The choice of parents in the pseudo-testcross is critically discussed. The sex determinant was mapped in A. callosa. Received: 27 July 2000 / Accepted: 31 October 2000  相似文献   

19.
A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers   总被引:2,自引:0,他引:2  
Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F2 population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map.  相似文献   

20.
Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号